

Visualization Tool for a Terrain-Based Genetic Algorithm

V. Scott Gordon James Thein
CSU, Sacramento Genetech, Inc.

gordonvs@ecs.csus.edu jthein@gene.com

Abstract
We describe and implement a visualization tool

applet for a Terrain-Based Genetic Algorithm (TBGA).
The TBGA is a self-tuning version of the Cellular
Genetic Algorithm (CGA), wherein various
combinations of parameter values appear in different
physical locations of the population. The TBGA is
useful for solving optimization problems as well as for
finding good CGA parameter values. By tallying the
number of times a new best individual is found for
each location in the population, the applet illustrates
the progress of evolution as a gradually evolving
terrain map showing effective locations as having
increasing altitude. We contrast two methods for using
the TBGA to determine good parameter settings. The
tool can also help educate users unfamiliar with the
TBGA and how it works.

1. Introduction

The Terrain-Based Genetic Algorithm (TBGA) is
a self-tuning version of the Cellular Genetic Algorithm
(CGA). In a TBGA, various combinations of parameter
values appear in different physical locations of the
population, forming a sort of terrain in which solutions
evolve. In a previous study [8], the TBGA was shown
to perform better and with less parameter tuning than a
CGA on a suite of test problems, when the CGA was
set to parameter values used in an earlier set of
experiments [7] and thought to be good.

The TBGA was also used to automatically
determine good parameter settings for the CGA. The
resulting CGA produced even better results than were
achieved by the TBGA that found those settings. Thus,
the TBGA not only displayed good potential as a
function optimizer, it also was a powerful tool for
extracting better performance from a CGA, and
required less parameter tuning.

The nature of the TBGA algorithm lends itself to
visualization. In particular, a visualization tool is useful
both in assisting new users in understanding the
algorithm, and as a research aid for studying how best
to utilize the TBGA for extracting aggregate parameter
information. In this study, we describe a visualization
method and Java applet tool that supports these goals.

2. Background - CGA / TBGA

Selecting good parameter values (e.g., mutation
rate) can be complicated, and is affected not only by
the the genetic algorithm itself, but also the nature of
the optimization problem [1, 3, 4, 10, 13]. A self-tuning
genetic algorithm attempts to determine suitable
parameter values without user intervention. In the
TBGA, this is accomplished by spreading a range of
parameter values along the population axes of a CGA.

Cellular genetic algorithms (CGA) - sometimes
called massively-parallel GA's - assign one individual
per processor and limit mating to within demes
(neighborhoods). CGAs are usually simulated on a
single processor with a 2-dimensional matrix. There
are many types of CGA's, and by 1989, numerous
researchers had developed the same concept
independently [9, 11, 12]. Whitley's work with a
cellular automata model of these algorithms [15] gave
rise to the term CGA.

The TBGA is based on a common CGA described
in a previous study [6] called a fixed-topology Deme-4
CGA. Each individual is processed at every generation,
and an individual’s mate is selected from the best of
the four strings located above, below, left, and right
(see Figure 1).

XX

 Figure 1. The Deme for Node X in a Deme-4 CGA

Crossover is always performed, yielding two
offspring, and mutation is then applied to each
offspring. If either resulting offspring has a better or
equal fitness than the original node, then that node is
replaced by the most fit offspring. Edge elements wrap
around, forming a torus. We use reduced-surrogate
crossover.

Next, parameters are chosen as terrain variables.
Since the CGA described has two dimensions and
therefore two axes, we chose two parameters as terrain
variables: mutation rate and number of crossover
points. A range of values for those parameters is spread
along the axes of the CGA, so that strings residing in
different physical locations in the population structure
are subjected to different combinations of settings
(although the parameter values in neighboring cells are
similar). The variances in parameter values over the
space form a sort of terrain, and that is why such an
algorithm is called a terrain-based genetic algorithm.

Consider the 8x8 CGA in Figure 2. In this
example, mutation rates are spread along the X-axis.
The maximum mutation rate is 35%, and the minimum
rate is 0%. Mutation rates for each cell are shown along
the x-axis at the bottom of the grid. Similarly, settings
for the number of crossover points are spread along the
Y-axis, where the values range from 1 to 8. Note that
every cell in a given column has the same mutation
rate, and every cell in a given row has the same number
of crossover points. To achieve a smooth distribution
of parameters, while still retaining the advantages of a
toroidal CGA topology, parameters are arranged using
a process called sifting, in which the maximum value is
placed in the center, then each decreasing value is
placed on alternating sides.

5
7

4

6

8

1

2

3

0 .1 .2 .3 .35 .25 .15 .05

Mut rate = 0.3
#xover pts = 6

Figure 2. Mutation Rate (along x-axis) and Number of
Crossover Points (along y-axis), after sifting

Even though several cells share the same mutation
rate (for example), every cell has a different
combination of parameters. Thus, in a TBGA with
parameters shown as in Figure 2, cells in the far upper
left have low mutation rates and few crossover points;
cells in the left center area have low mutation rates and
many crossover points, etc. In theory, a TBGA could
utilize a wide variety of parameter combinations, by
extending the CGA to more dimensions as has been
proposed by some researchers [2].

3. Finding Good Parameter Settings

The TBGA proved to be a useful tool in finding
good parameter settings for use in a standard CGA. In
the original study, we did this by identifying the
physical locations in the population structure where the
best solutions evolved [8].

The TBGA reports the location of each newly
found current best string. Sometimes, these locations
cluster around specific areas, but many times they do
not. When there is clear clustering, it is natural to
suspect that a good set of parameters is found at the
highest physical peak in the terrain. When there is not
clear clustering around a peak, a weighted average of
the parameter settings at each location can be used.

For example, suppose we were using a 3x3 grid,
and say that we ran the TBGA for 10 generations,
tallying for each cell how often a new current best
string appeared there. Since each cell also has its own
value for mutation we might tally data similar to that
shown in Table 1.

Table 1. Example Tally for Finding Mutation Rate

CELL Mutation Rate #bests

(1,1) .00 0
(1,2) .00 0
(1,3) .00 2

(2,1) .01 0
(2,2) .01 5
(2,3) .01 0
(3,1) .02 3
(3,2) .02 0
(3,3) .02 0

The most good solutions were found in cell (2,2). If
we use the highest peak method for finding parameter
settings, we would propose using .01 as the mutation
rate, since that is the mutation rate associated with cell
(2,2). If, however, we use the weighted average

method, the suggested mutation rate would then be the
sums of the mutation rates, weighted by the tallies, or:

[5*(.01) + 3*(.02) + 2*(0)]/10 = .011

In the original study, the weighted average
technique was used to compute mutation rate and
crossover points, and the resultant CGA performed
markedly better than both TBGA and the original CGA
[8]. However, there was no particular reason to believe
that weighted-sum was necessarily the most effective
approach. If solutions clearly cluster around one good
setting, highest peak may be a better choice.

Furthermore, consider a scenario in which good
solutions cluster around two peak areas of the graph,
wherin a weighted sum would reflect a location
between the two peaks, where no good solutions have
evolved. In this instance, it is not clear whether
weighted sum or highest peak would be preferable.

Finally, there is the possibility that certain
parameter settings are useful at different times during
search. If so, then perhaps the tallies could be used to
generate a schedule for dynamic parameter settings.

4. Visualization Tool

The terrain model described in the previous
sections lends itself to 3-D visualization. We now
describe our TBGA visualization Java applet.

At each generation, the best string or strings reside
at particular locations on the grid. As evolution
proceeds, the TBGA counts the number of times each
grid location contains an individual that has the new
best fitness. These tallies are displayed as an altitude
corresponding to each grid point, producing a 3D
terrain map where the highest peaks represent locations
where the best strings have evolved.

It is important not to confuse the various terrain
analogies being employed here. The distribution of
parameter values through the grid can be considered
one such terrain. The efficacy of each grid location,
and thus each set of parameters, as illustrated during
the course of evolution, is another terrain. Our current
visualization efforts are concerned with the latter.

The tool builds and displays the evolution terrain
map described above in real time, and renders it both as
a wire-frame and as a solid model within a standard
browser. The tool also allows the user to select an
optimization problem from a list, the size of the grid,
the number of generations, and the number of
experiments to run. As the resulting terrain map grows
over time, the user can rotate it so as to view it from
various perspectives. Figure 3 shows the tool and a
sample of the visualization it provides.

Currently, we have only entered a few problems
into the prototype, taken from our previous study [8],
including the Rastrigin function, the Ugly 4-bit
Deceptive function, DeJong’s F2, and a 20-object
knapsack problem. The first two are frequently used as
GA test problems. The Rastrigin function was
described in [12], and is characterized by a large search
space and many local minima. The Ugly 4-bit
Deceptive problem [14] is a 40-bit artificially-
constructed problem in which ten fully-deceptive 4-bit
subproblems are interleaved. Whitley’s problem is
based on a similar 3-bit problem introduced in [5].

Figure 3 shows the terrain map as displayed by the
applet after 30 experiments of 500 generations each,
for the Rastrigin function. Each point on the grid
represents a location in the CGA population, and the
altitude illustrates how many individuals with a new
best-fitness have appeared at that location. The higher
the altitude, the more effective the parameters at that
location have been at generating better solutions.

Figure 3 also illustrates a run in which two peaks
are clearly visible in the solid model. Mutation rate is
roughly the same for each peak, but the setting for
crossover points is different for each peak.

We ran similar sets of experiments on each of the
other three functions. The wire-frame terrain shown in
Figure 4 corresponds to the Ugly-4-bit function, and is
representative of the terrains generated for the
remaining functions. The black dots shown on the grid
are the locations of the highest peak, and weighted-sum
locations. Note that there is not as clear a peak as there
is for the Rastrigin function.Also note that the highest-
peak method and the weighted sum method do not
agree on which parameter settings are optimal. The
parameter settings suggested by each method, for each
of the four problems, are shown in Table 2.

Table 2. Optimal parameter settings as determined by TBGA

Problem method mutation xover pts
Ugly 4-bit

highest peak
weighted avg

.0469

.0165
4
7

DeJong F2

highest peak
weighted avg

0
.0371

7
5

Knapsack 20

highest peak
weighted avg

.1219

.0372
2
4

Rastrigin

highest peak
weighted avg

.0028

.0028
7
10

Figure 3. TBGA Visualization Applet, solid model.

Highest peak and corresponding parameter values found for the Rastrigin function.

Figure 4. Wire-mesh parameter visualization for the Ugly 4-bit Deceptive function

5. Evaluation and First Assessment

The parameters settings suggested by the TBGA
vary considerably depending on the method used
(highest peak versus weighted average). In order to
determine which recommendation(s) tended to be the
best, we compared them using a standard CGA for
each of the parameters settings suggested from Table 2.
The results are shown in figure 5.

The weighted-sum method is slightly better on the
Ugly 4-bit problem and the Rastrigin function, but the
highest peak method works the best on F2 and the
Knapsack problems. Furthermore, contrasting the two
methods in light of the differing shaped terrains is also
a bit inconclusive. The convergence graphs agree very
strongly on the Rastrigin function, presumably because
the mutation rates proposed were identical - mutation
rate is likely the more critical of the two parameters.

The terrain shown in figure 3 is markedly different
than the terrain in figure 4. Perhaps we should not limit
the TBGA to 30 experiments, but instead to run it until
a peak emerges. This would be a particularly useful test
for the Ugly 4-bit problem, since the inferior
performance of the highest-peak method reflected a
peak that was, in actuality, not much of a peak.

It is important to note that, in all cases,
performance of the CGA remains significantly better
than for parameter settings identified previously
(without the TBGA) [7,8]. In that sense, it appears that
both methods work well. Further study is needed on a
broader set of problems to determine which method
usually performs the best, or is more consistent.

6. Other Uses for Visualization

The TBGA is unique and the terrain analogy is
sometimes not easily grasped by users not already
expert in the field of evolutionary computation.
Visualization will help elucidate and educate new users
considering utilizing the TBGA for their particular
applications. Since a Java applet is unlikely to perform
as well on difficult problems as, say, our original C++
implementation, the visualization can be accompanied
by production code that can be downloaded if the
applet proves insufficiently powerful.

In addition to the educational benefits of
visualization, the tool would greatly facilitate
additional study in several areas:

− The clustering behavior of the TBGA needs further

study. Perhaps solutions would tend to cluster
around particular good parameter settings if
averaged over significantly more experiments.

− If a pattern of parameter utilization can be
discerned by observing the nature of terrain
growth, it may lead to the development of
scheduling methods for dynamic parameter
settings.

− Observing the resultant terrains may suggest
alternative methods for parameter determination,
hopefully superior to the weighted-sum or highest-
peak methods.

7. Conclusions

We described a visualization tool for a terrain-
based genetic algorithm (TBGA), and implemented it
as a Java applet. The TBGA is a self-tuning version of
the traditional Cellular Genetic Algorithm (CGA), in
which various combinations of parameter values
appear in different physical locations of the population,
forming a sort of terrain in which individual solutions
evolve. It is useful both for solving optimization
problems, and also for finding good parameter values
to use in a standard CGA.

By tallying the number of times a new best
individual is found for each location in the population,
we illustrated the progress of evolution as a gradually
evolving terrain map showing effective locations as
having increasing altitude. Visualization using both
solid and wireframe rendering was described including
several sample outputs for various test problems. Two
methods were described and tested for identifying
parameter values: highest peak and weighted sum, but
it is not yet clear which method is preferable.

Many uses for the tool were described, including
applications for education and research. In the area of
education, the tool can help educate new users
unfamiliar with the TBGA and how it works. It is
anticipated that the tool will help us refine our
techniques for using the TBGA to identify good CGA
parameter settings, as well as to better understand the
nature of evolution within a TBGA.

8. Acknowledgement

The visualization tool described in this paper was
developed as part of a team project at CSU
Sacramento. We thank students Michael Pope,
Matthew Santa Cruz, Robert Carlin, Reuben Fauth, and
James Sanguinetti for their work in this capacity, and
Dr. Gopal Rao for his supervisorial assistance.

Figure 5. Convergence of CGA using TBGA-determined
parameters, peak vs. weighted-sum

9. References

[1] Back, T. Optimal Mutation Rates in Genetic Search.
Proc. of the 5th Int. Conf. on Genetic Algorithms (1993) 2

[2] Baluja, S. Structure and Performance of Fine-Grain
Parallelism in Genetic Search. Proceedings of the 5th
International Conference on Genetic Algorithms (1993) 155

[3] Davidor, Y. and Ben-Kiki, O. The Interplay Among the
Genetic Algorithm Operators: Information Theory Tools used
in a Holistic Way. PPSN2 (1992) 75

[4] Goldberg, D. Sizing Populations for Serial and Parallel
Genetic Algorithms. Proceedings of the 3rd International
Conference on Genetic Algorithms (1989) 70

[5] Goldberg, D., Korb, B., and Deb, K. Messy Genetic
Algorithms: Motivation, Analysis, and First Results.
Complex Systems 3 (1989)

[6] Gordon, V., Mathias, K., and Whitley, D. Cellular
Genetic Algorithms as Function Optimizers: Locality Effects.
ACM Symposium on Applied Computing (SAC’94) (1994)

[7] Gordon, V. and Whitley, D. Serial and Parallel Genetic
Algorithms as Function Optimizers. Proceedings of the 5th
International Conference on Genetic Algorithms (1993) 177

[8] Gordon, V., Pirie, R., Wachter, A., and Sharp, S.
Terrain-Based Genetic Algorithm (TBGA): Modeling
Parameter Space as Terrain. Proceedings of the Genetic and
Evolutionary Computation Conf. (GECCO-99) (1999) 229

[9] Gorges-Schleuter, M. ASPARAGOS - An Asynchronous
Parallel Genetic Optimization Strategy. Proceedings of the
3rd International Conf. on Genetic Algorithms (1989) 422

[10] Grefenstette, J. Optimization of Control Parameters for
Genetic Algorithms. IEEE Transactions on Systems, Man,
and Cybernetics, Vol SMC-16, No.1, January/February 1986

[11] Manderick, B. and Spiessens, P. Fine-Grained Parallel
Genetic Algorithms. Proceedings of the 3rd International
Conference on Genetic Algorithms (1989) 428

[12] Muhlenbein, H., Schomisch, M., and Born, J. The
Parallel Genetic Algorithm as Function Optimizer. Proc. of
the 4th International Conf. on Genetic Algorithms (1991) 271

[13] Schaffer, J.D., Caruana, R., Eshelman, L., and Das, R. A
Study of Control Parameters Affecting Online Performance
of Genetic Algorithms for Function Optimization. Proc. of the
3rd International Conf. on Genetic Algorithms (1989) 51

[14] Whitley, D. Fundamental Principles of Deception in
Genetic Search. FOGA. Morgan Kaufmann (1991)

[15] Whitley, D. Cellular Genetic Algorithms. Proceedings
of the 5th International Conference on Genetic Algorithms
(1993) 658

