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Abstract 
We describe and implement a visualization tool 

applet for a Terrain-Based Genetic Algorithm (TBGA). 
The TBGA is a self-tuning version of the Cellular 
Genetic Algorithm (CGA), wherein various 
combinations of parameter values appear in different 
physical locations of the population. The TBGA is 
useful for solving optimization problems as well as for 
finding good CGA parameter values. By tallying the 
number of times a new best individual is found for 
each location in the population, the applet illustrates 
the progress of evolution as a gradually evolving 
terrain map showing effective locations as having 
increasing altitude. We contrast two methods for using 
the TBGA to determine good parameter settings. The 
tool can also help educate users unfamiliar with the 
TBGA and how it works. 

1. Introduction 
 

The Terrain-Based Genetic Algorithm (TBGA) is 
a self-tuning version of the Cellular Genetic Algorithm 
(CGA). In a TBGA, various combinations of parameter 
values appear in different physical locations of the 
population, forming a sort of terrain in which solutions 
evolve. In a previous study [8], the TBGA was shown 
to perform better and with less parameter tuning than a 
CGA on a suite of test problems, when the CGA was 
set to parameter values used in an earlier set of 
experiments [7] and thought to be good. 

The TBGA was also used to automatically 
determine good parameter settings for the CGA. The 
resulting CGA produced even better results than were 
achieved by the TBGA that found those settings. Thus, 
the TBGA not only displayed good potential as a 
function optimizer, it also was a powerful tool for 
extracting better performance from a CGA, and 
required less parameter tuning. 

The nature of the TBGA algorithm lends itself to 
visualization. In particular, a visualization tool is useful 
both in assisting new users in understanding the 
algorithm, and as a research aid for studying how best 
to utilize the TBGA for extracting aggregate parameter 
information. In this study, we describe a visualization 
method and Java applet tool that supports these goals. 

 
2. Background - CGA / TBGA 
 

Selecting good parameter values (e.g., mutation 
rate) can be complicated, and is affected not only by 
the the genetic algorithm itself, but also the nature of 
the optimization problem [1, 3, 4, 10, 13]. A self-tuning 
genetic algorithm attempts to determine suitable 
parameter values without user intervention. In the 
TBGA, this is accomplished by spreading a range of 
parameter values along the population axes of a CGA. 

Cellular genetic algorithms (CGA) - sometimes 
called massively-parallel GA's - assign one individual 
per processor and limit mating to within demes 
(neighborhoods). CGAs are usually simulated on a 
single processor with a 2-dimensional matrix. There 
are many types of CGA's, and by 1989, numerous 
researchers had developed the same concept 
independently [9, 11, 12]. Whitley's work with a 
cellular automata model of these algorithms [15] gave 
rise to the term CGA. 

The TBGA is based on a common CGA described 
in a previous study [6] called a fixed-topology Deme-4 
CGA. Each individual is processed at every generation, 
and an individual’s mate is selected from the best of 
the four strings located above, below, left, and right 
(see Figure 1). 
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 Figure 1. The Deme for Node X in a Deme-4 CGA 



Crossover is always performed, yielding two 
offspring, and mutation is then applied to each 
offspring. If either resulting offspring has a better or 
equal fitness than the original node, then that node is 
replaced by the most fit offspring. Edge elements wrap 
around, forming a torus. We use reduced-surrogate 
crossover. 

Next, parameters are chosen as terrain variables. 
Since the CGA described has two dimensions and 
therefore two axes, we chose two parameters as terrain 
variables: mutation rate and number of crossover 
points. A range of values for those parameters is spread 
along the axes of the CGA, so that strings residing in 
different physical locations in the population structure 
are subjected to different combinations of settings 
(although the parameter values in neighboring cells are 
similar). The variances in parameter values over the 
space form a sort of terrain, and that is why such an 
algorithm is called a terrain-based genetic algorithm. 

Consider the 8x8 CGA in Figure 2. In this 
example, mutation rates are spread along the  X-axis. 
The maximum mutation rate is 35%, and the minimum 
rate is 0%. Mutation rates for each cell are shown along 
the x-axis at the bottom of the grid. Similarly, settings 
for the number of crossover points are spread along the 
Y-axis, where the values range from 1 to 8. Note that 
every cell in a given column has the same mutation 
rate, and every cell in a given row has the same number 
of crossover points. To achieve a smooth distribution 
of parameters, while still retaining the advantages of a 
toroidal CGA topology, parameters are arranged using 
a process called sifting, in which the maximum value is 
placed in the center, then each decreasing value is 
placed on alternating sides. 
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Figure 2. Mutation Rate (along x-axis) and Number of 
Crossover Points (along y-axis), after sifting 

 

Even though several cells share the same mutation 
rate (for example), every cell has a different 
combination of parameters. Thus, in a TBGA with 
parameters shown as in Figure 2, cells in the far upper 
left have low mutation rates and few crossover points; 
cells in the left center area have low mutation rates and 
many crossover points, etc. In theory, a TBGA could 
utilize a wide variety of parameter combinations, by 
extending the CGA to more dimensions as has been 
proposed by some researchers [2]. 

 
3. Finding Good Parameter Settings 

The TBGA proved to be a useful tool in finding 
good parameter settings for use in a standard CGA. In 
the original study,  we did this by identifying the 
physical locations in the population structure where the 
best solutions evolved [8]. 

The TBGA reports the location of each newly 
found current best string. Sometimes, these locations 
cluster around specific areas, but many times they do 
not. When there is clear clustering, it is natural to 
suspect that a good set of parameters is found at the 
highest physical peak in the terrain. When there is not 
clear clustering around a peak, a weighted average of 
the parameter settings at each location can be used. 

For example, suppose we were using a 3x3 grid, 
and say that we ran the TBGA for 10 generations, 
tallying for each cell how often a new current best 
string appeared there. Since each cell also has its own 
value for mutation we might tally data similar to that 
shown in Table 1. 

 
Table 1. Example Tally for Finding Mutation Rate 

 
CELL Mutation Rate #bests 

(1,1) .00 0 
(1,2) .00 0 
(1,3) .00 2 

(2,1) .01 0 
(2,2) .01 5 
(2,3) .01 0 
(3,1) .02 3 
(3,2) .02 0 
(3,3) .02 0 

The most good solutions were found in cell (2,2). If 
we use the highest peak method for finding parameter 
settings, we would propose using .01 as the mutation 
rate, since that is the mutation rate associated with cell 
(2,2). If, however, we use the weighted average 



method, the suggested mutation rate would then be the 
sums of the mutation rates, weighted by the tallies, or: 

[5*(.01) + 3*(.02) + 2*(0)]/10 = .011 

In the original study, the weighted average 
technique was used to compute mutation rate and 
crossover points, and the resultant CGA performed 
markedly better than both TBGA and the original CGA 
[8]. However, there was no particular reason to believe 
that weighted-sum was necessarily the most effective 
approach. If solutions clearly cluster around one good 
setting, highest peak may be a better choice. 

Furthermore, consider a scenario in which good 
solutions cluster around two peak areas of the graph, 
wherin a weighted sum would reflect a location 
between the two peaks, where no good solutions have 
evolved. In this instance, it is not clear whether 
weighted sum or highest peak would be preferable. 

Finally, there is the possibility that certain 
parameter settings are useful at different times during 
search. If so, then perhaps the tallies could be used to 
generate a schedule for dynamic parameter settings. 

 
4. Visualization Tool 

The terrain model described in the previous 
sections lends itself to 3-D visualization. We now 
describe our TBGA visualization Java applet. 

At each generation, the best string or strings reside 
at particular locations on the grid. As evolution 
proceeds, the TBGA counts the number of times each 
grid location contains an individual that has the new 
best fitness. These tallies are displayed as an altitude 
corresponding to each grid point, producing a 3D 
terrain map where the highest peaks represent locations 
where the best strings have evolved. 

It is important not to confuse the various terrain 
analogies being employed here. The distribution of 
parameter values through the grid can be considered 
one such terrain. The efficacy of each grid location, 
and thus each set of parameters, as illustrated during 
the course of evolution, is another terrain. Our current 
visualization efforts are concerned with the latter. 

The tool builds and displays the evolution terrain 
map described above in real time, and renders it both as 
a wire-frame and as a solid model within a standard 
browser. The tool also allows the user to select an 
optimization problem from a list, the size of the grid, 
the number of generations, and the number of 
experiments to run. As the resulting terrain map grows 
over time, the user can rotate it so as to view it from 
various perspectives. Figure 3 shows the tool and a 
sample of the visualization it provides. 

Currently, we have only entered a few problems 
into the prototype, taken from our previous study [8], 
including the Rastrigin function, the Ugly 4-bit 
Deceptive function, DeJong’s F2, and a 20-object 
knapsack problem. The first two are frequently used as 
GA test problems. The Rastrigin function was 
described in [12], and is characterized by a large search 
space and many local minima. The Ugly 4-bit 
Deceptive problem [14] is a 40-bit artificially-
constructed problem in which ten fully-deceptive 4-bit 
subproblems are interleaved. Whitley’s problem is 
based on a similar 3-bit problem introduced in [5]. 

Figure 3 shows the terrain map as displayed by the 
applet after 30 experiments of 500 generations each, 
for the Rastrigin function. Each point on the grid 
represents a location in the CGA population, and the 
altitude illustrates how many  individuals with a new 
best-fitness have appeared at that location. The higher 
the altitude, the more effective the parameters at that 
location have been at generating better solutions. 

Figure 3 also illustrates a run in which two peaks 
are clearly visible in the solid model. Mutation rate is 
roughly the same for each peak, but the setting for 
crossover points is different for each peak. 

We ran similar sets of experiments on each of the 
other three functions. The wire-frame terrain shown in 
Figure 4 corresponds to the Ugly-4-bit function, and is 
representative of the terrains generated for the 
remaining functions. The black dots shown on the grid 
are the locations of the highest peak, and weighted-sum 
locations. Note that there is not as clear a peak as there 
is for the Rastrigin function.Also note that the highest-
peak method and the weighted sum method do not 
agree on which parameter settings are optimal. The 
parameter settings suggested by each method, for each 
of the four problems, are shown in Table 2. 

 
 

Table 2. Optimal parameter settings as determined by TBGA 
 

Problem method mutation xover pts 
Ugly 4-bit 
 

highest peak 
weighted avg 

.0469 

.0165 
4 
7 

DeJong F2 
 

highest peak 
weighted avg 

0 
.0371 

7 
5 

Knapsack 20 
 

highest peak 
weighted avg 

.1219 

.0372 
2 
4 

Rastrigin 
 

highest peak 
weighted avg 

.0028 

.0028 
7 
10 

 
 
 



 

 
Figure 3. TBGA Visualization Applet, solid model. 

Highest peak and corresponding parameter values found for the Rastrigin function. 
 
 
 
 

 
 

Figure 4. Wire-mesh parameter visualization for the Ugly 4-bit Deceptive function



5. Evaluation and First Assessment 

The parameters settings suggested by the TBGA 
vary considerably depending on the method used 
(highest peak versus weighted average). In order to 
determine which recommendation(s) tended to be the 
best, we compared them using a standard CGA for 
each of the parameters settings suggested from Table 2. 
The results are shown in figure 5. 

The weighted-sum method is slightly better on the 
Ugly 4-bit problem and the Rastrigin function, but the 
highest peak method works the best on F2 and the 
Knapsack problems. Furthermore, contrasting the two 
methods in light of the differing shaped terrains is also 
a bit inconclusive. The convergence graphs agree very 
strongly on the Rastrigin function, presumably because 
the mutation rates proposed were identical - mutation 
rate is likely the more critical of the two parameters. 

The terrain shown in figure 3 is markedly different 
than the terrain in figure 4. Perhaps we should not limit 
the TBGA to 30 experiments, but instead to run it until 
a peak emerges. This would be a particularly useful test 
for the Ugly 4-bit problem, since the inferior 
performance of the highest-peak method reflected a 
peak that was, in actuality, not much of a peak. 

It is important to note that, in all cases, 
performance of the CGA remains significantly better 
than for parameter settings identified previously 
(without the TBGA) [7,8]. In that sense, it appears that 
both methods work well. Further study is needed on a 
broader set of problems to determine which method 
usually performs the best, or is more consistent. 

 
6. Other Uses for Visualization 
 

The TBGA is unique and the terrain analogy is 
sometimes not easily grasped by users not already 
expert in the field of evolutionary computation. 
Visualization will help elucidate and educate new users 
considering utilizing the TBGA for their particular 
applications. Since a Java applet is unlikely to perform 
as well on difficult problems as, say, our original C++ 
implementation, the visualization can be accompanied 
by production code that can be downloaded if the 
applet proves insufficiently powerful. 

In addition to the educational benefits of 
visualization, the tool would greatly facilitate 
additional study in several areas: 

 
− The clustering behavior of the TBGA needs further 

study. Perhaps solutions would tend to cluster 
around particular good parameter settings if 
averaged over significantly more experiments. 

− If a pattern of parameter utilization can be 
discerned by observing the nature of terrain 
growth, it may lead to the development of 
scheduling methods for dynamic parameter 
settings. 

− Observing the resultant terrains may suggest 
alternative methods for parameter determination, 
hopefully superior to the weighted-sum or highest-
peak methods. 

 
7. Conclusions 

We described a visualization tool for a terrain-
based genetic algorithm (TBGA), and  implemented it 
as a Java applet. The TBGA is a self-tuning version of 
the traditional Cellular Genetic Algorithm (CGA), in 
which various combinations of parameter values 
appear in different physical locations of the population, 
forming a sort of terrain in which individual solutions 
evolve. It is useful both for solving optimization 
problems, and also for finding good parameter values 
to use in a standard CGA. 

By tallying the number of times a new best 
individual is found for each location in the population, 
we illustrated the progress of evolution as a gradually 
evolving terrain map showing effective locations as 
having increasing altitude. Visualization using both 
solid and wireframe rendering was described including 
several sample outputs for various test problems. Two 
methods were described and tested for identifying 
parameter values: highest peak and weighted sum, but 
it is not yet clear which method is preferable. 

Many uses for the tool were described, including 
applications for education and research. In the area of 
education, the tool can help educate new users 
unfamiliar with the TBGA and how it works. It is 
anticipated that the tool will help us refine our 
techniques for using the TBGA to identify good CGA 
parameter settings, as well as to better understand the 
nature of evolution within a TBGA. 
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Figure 5. Convergence of CGA using TBGA-determined 
parameters, peak vs. weighted-sum 
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