
Terrain-Based Genetic Algorithm (TBGA):
Modeling Parameter Space as Terrain

V. Scott Gordon

Computer Science Dept.
Sonoma State University

Rebecca Pirie

Alcatel, USA

Adam Wachter

Alcatel, USA

Scottie Sharp

Eclipsys Corp

Abstract

The Terrain-Based Genetic Algorithm (TBGA)
is a self-tuning version of the traditional Cellular
Genetic Algorithm (CGA). In a TBGA, various
combinations of parameter values appear in
different physical locations of the population,
forming a sort of terrain in which individual
solutions evolve. We compare the performance
of the TBGA against that of the CGA on a
known suite of problems. Our results indicate
that the TBGA performs better than the CGA on
the test suite, with less parameter tuning, when
the CGA is set to parameter values thought in
prior studies to be good. While we had hoped
that good solutions would cluster around the best
parameter settings, this was not observed.
However, we were able to use the TBGA to
automatically determine better parameter settings
for the CGA. The resulting CGA produced even
better results than were achieved by the TBGA
which found those parameter settings.

1 INTRODUCTION

Genetic algorithms are search algorithms based loosely on
the principles of natural evolution, particularly genetic
evolution. They have been useful mainly for optimization
problems, such as finding the shortest path through a set
of cities. By applying simplified notions of selection,
crossover, mutation, and survival of the fittest to an
artificial population of candidate solutions, a genetic
algorithm evolves solutions with relatively little tailoring
of the solution method to the problem domain. The user
selects the population size, mutation rate, number of
crossover points, etc. We refer to these values as GA
parameters.

When a genetic algorithm is used for optimization, the
user attempts to find a set of parameters whereby the best
solution found by the algorithm is very good or at least
acceptable. Selecting good parameter values (e.g.,
mutation rate, etc.) can be complicated, and is affected not
only by the nature of the algorithm, but also the nature of

the optimization task (Back, 1993; Davidor, 1992;
Goldberg, 1989; Grefenstette, 1986; Schaffer, 1989).

Various researchers have attempted to design algorithms,
which are self-tuning; that is, that adjust parameter values
dynamically and therefore require less hand tuning.
Fogarty (1989), Schraudolph and Belew (1990), Tsutsui
and Fujimoto (1993), Smith (1993), and others have
proposed methods for varying parameter values such as
mutation rates, crossover mechanisms, etc. over time or in
response to time-variant conditions (e.g., fitness
improvement over time).

Our approach is simpler. Rather than dynamically
changing parameters during a run, we instead spread a
range of parameter values evenly along the axes of the
population, so that each location in the population space
has a different combination of parameters. Strings
residing in different physical locations in the population
structure are subjected to different parameter settings
(although the parameter values in neighboring cells are
roughly similar). The variances in parameter values over
the space form a sort of terrain, and therefore we dub such
an algorithm a terrain-based genetic algorithm (TBGA).

2 TBGA

One could envision a variety of ways to implement a
TBGA. One simple and natural population structure on
which to implement a TBGA is the grid structure often
referred to as a cellular genetic algorithm. This is the
approach we chose.

Cellular genetic algorithms (CGA), sometimes called
massively-parallel GA's, assign one individual per
processor and limit mating to within demes
(neighborhoods). It is not necessary to use a massively
parallel computer to implement a CGA, as it can be (and
usually is) simulated on a single processor with a 2-
dimensional matrix. There are many types of CGA's,
depending on the selection and replacement mechanisms
employed, and the size/structure of the demes. By 1989,
numerous researchers had developed massively parallel
genetic algorithms independently. Goldberg called it the
pollination model in his 1989 textbook (Goldberg, 1989).
Manderick and Spiessens called it the FG (fine-grained)

model (Manderick, 1989). Muhlenbein and Gorges-
Schleuter had by this time dubbed it ASPARAGOS
(Gorges-Schleuter, 1989; Muhlenbein, 1991). Whitley's
cellular automata model of these algorithms (Whitley,
1993) led us to agree that the term CGA is the most
descriptive, and is the one we use. In an earlier study,
Gordon et.al. examined a variety of CGA's that were not
terrain-based (Gordon, Bohm, and Whitley, 1994). Baluja
examined a three-dimensional CGA (Baluja, 1993) which
might be useful for implementing future TBGAs.

Our TBGA is based on a common CGA described in a
previous study (Gordon, Mathias, and Whitley, 1994)
called a fixed-topology Deme-4 CGA. Each individual is
processed at every generation, and an individual’s mate is
selected from the best of the four strings located above,
below, left, and right (see Figure 1). Crossover is always
performed, yielding two offspring, and mutation is
applied to each offspring. If either resulting offspring has
a better or equal fitness than the original node, then that
node is replaced by the most fit offspring. Edge elements
wrap around, forming a torus.

Figure 1: The Deme for Node X in a Deme-4 CGA

Since the CGA described has two dimensions and
therefore two axes, we chose two parameters as terrain
variables: mutation rate and number of crossover points.
Spreading parameter values across the grid is a simple
concept. One could simply select appropriate minimum
and maximum values for the parameter in question, and
use a linear (or some non-linear) distribution to determine
the actual parameter value to use at a given cell.

Consider the 8x8 CGA in Figure 2. In this example,
mutation rates are spread linearly along the X-axis. The
maximum mutation rate is 35%; the minimum rate is 0%.
Mutation rates for each cell is shown along the X-axis at
the bottom of the grid. Note that every cell in a given
column has the same mutation rate.

The number of crossover points parameter is also shown
in Figure 2, spread along the Y-axis. The minimum
number of points is 1, the maximum is 8. Values for each
cell are shown along the y-axis at the left of the grid. Note
that every cell in a given row has the same value.

Even though several cells share the same mutation rate
(for example), every cell has a different combination of
parameters. Thus, in a TBGA with parameters shown as
in Figure 2, cells in the far upper left have low mutation
rates and few crossover points; cells at the far lower left
have low mutation rates and many crossover points, etc.
In theory, a TBGA could utilize a wide variety of
parameter combinations, using this topological approach.
Extending the method to three parameters could be done,
for example, with a 3-dimensional CGA.

Figure 2: Mutation rate Spread Along the X-axis of a
CGA, Number of Crossover pts Spread Along the Y-axis.

For some parameters, a linear distribution scheme such as
shown in Figure 2 may not be ideal. For example, it
would not be a good approach for number of crossover
points. It would be more appropriate to model a variety of
functionally different values, such as 1-point, 2-point,
uniform, and other commonly used values. A linear
distribution would lead to a disproportionate number of
values which behave essentially like uniform crossover.

In the TBGA implemented, we used a 20x20 grid of cells,
with the following ranges and non-linear distributions of
parameters:

• Number of Crossover Points: These are distributed
linearly from 0 to 8 over the first 15 rows, and then
distributed linearly from 8 to strlen/2 over the last 5
rows, where strlen is the string length utilized by the
encoding. The intent of this distribution is to have most
of the population employ a variety of commonly-used
values (0-8 points), while setting aside a region where
uniform crossover is applied.

• Mutation Rate: Values are distributed linearly from 0
to .75/strlen over the first 15 columns, and then
distributed linearly from .75/strlen to 3/strlen over the
last 5 columns (strlen defined above). This distribution
enabled the majority of the population to employ a
variety of typical mutation rates, while setting aside a
region where rather high mutation rates occur.

5

7

4

6

8

1

2

3

0 .1 .2 .3 .35.25.15.05

Mut rate = 0.15
#xover pts = 6

XX

Finally, we rearranged the distribution of parameters by a
process which we called sifting. Consider again the
distribution of crossover values shown in Figure 2. Since
CGAs are toroidal (the edges wrap around), each of the
cells along the bottom have neighbors in the top row. This
means that there is a region where neighboring cells have
maximally different parameter values. We did not wish to
explore the effects of radically divergent parameter values
within a deme, instead preferring to concentrate on
systems where neighboring cells always have similar
parametric effects.

To achieve a uniformly smooth distribution of parameters,
while still retaining the toroidal CGA topology, we placed
the maximum parameter value in the center, then placed
each decreasing value on alternating sides. After this
sifting process, the parameter values shown in Figure 2,
for example, would be rearranged as shown in Figure 3.

Figure 3: Mutation Rate (along the X-axis) and Number of
Crossover Points (along the Y-axis), after Sifting

3 TEST SUITE

Our test suite consists of three numeric problems, one
deceptive problem, and a knapsack problem. The numeric
problems, all minimization functions, are hereafter
referred to as the F2, F4, and Rastrigin functions. F2 and
F4 are from DeJong’s suite and are well documented, F2
being a somewhat difficult multimodal function and F4
involving a large solution space plus Gaussian noise
(DeJong, 1975). The Rastrigin function was described in
(Muhlenbein, 1991), and used frequently as a GA test
problem because of its large search space and many local
minima. The function has 20 parameters xi in [-5.12,5.12]
where:

The ugly 4-bit deceptive problem (hereafter referred to
as D4) is a 40-bit artificially-constructed problem
introduced by Whitley (1991) in which ten fully-
deceptive 4-bit subproblems are interleaved. In general,
the three bits of each subproblem X appear in positions X,
10+X, 20+X, and 30+X. Whitley’s problem is based on a
similar 3-bit problem introduced by Goldberg, Korb, and
Deb (1989). Gordon and Whitley discussed the
implications of using deceptive problems to measure
performance (Gordon, Whitley, 1993).

The zero-one knapsack problem is defined as follows.
Given n objects with positive weights Wi and positive
profits Pi , and a knapsack capacity M, determine a subset
of the objects represented by a bit vector Xi such that

A greedy approximation to the global optimum can be
found by selecting objects by profit/weight ratio until the
knapsack cannot be further filled.

A simple GA encoding for the knapsack problem is to let
each bit represent the inclusion or exclusion of one of the
n objects from the knapsack. A bitstring of length n can
be used to represent candidate solutions. If the objects are
sorted by profit/weight ratio, then the greedy
approximation appears as a series of 1s followed by a
series of 0s. The difficulty with this representation is that
it is possible to generate infeasible solutions. Setting too
many bits to 1 might overflow the capacity of the
knapsack. Gordon and Whitley (1993) considered two
methods for handling overflow, and also described two
knapsack problems. Here, we use the 20-object problem
described by Bohm and Egan (1992), and the penalty
evaluation method for handling overflow described by
Gordon and Whitley.

Gordon, Bohm, and Whitley (1994) have argued that
genetic algorithms perform poorly on these knapsack
problems (and much larger instances) when compared
with depth-first and branch-and-bound search methods.
The knapsack experiments presented here are therefore
useful only for comparing the various genetic algorithms
against each other.

4 NATURE OF STUDY

For each function in the test suite, we compare the
performance of the TBGA against that of the standard
CGA. While we did not expect the TBGA to outperform
the CGA, comparable performance might suggest that the
TBGA is adequate and easier to use, because it requires
less tuning. Parameter settings in the hand-tuned CGA
were those determined by trial-and-error in Gordon and
Whitley (1993) to be good. Number of crossover points
was set to two, and mutation rate (the likelihood that a
given bit is flipped) was 1/(2*strlen), where strlen is the
length of the string used for the encoding.

5

7

4

6

8

1

2

3

0 .1 .2 .3 .35 .25 .15 .05

Mut rate = 0.3
#xover pts = 6

f (xi | i = 1,n) = 200 + x i
2 −10cos(2 xi)

i =1

20

∑

X i Wi ≤M and Xi Pi

i =1

n

∑
i =1

n

∑ maximal

We run both genetic algorithms across the test suite of
functions for 30 runs. We plot the average fitness of the
best strings found at each generation. These plots are
shown in Figures 4-7 (we do not include a plot for F4
because the two algorithms perform identically). Each
plate also includes a plot for a “tbga-tuned” CGA, which
will be described later in the paper. We also qualitatively
assess the speed of finding solutions, especially when
both of the algorithms find the global optimum.

Each problem in the test suite is algebraically converted
to a minimization function with a minimum of zero. The
only exception to this is DeJong’s F4 which has a
minimum of -6.

5 TEST RESULTS

To our surprise, the self-tuning TBGA performed better
than the CGA on four of the five test problems, and was
only slightly outperformed by CGA on the knapsack
problem (this will be explained later). Table 1 shows the
average fitness of the best strings found at the end of the
runs for each algorithm on each problem (the better
performance of the two is shown in boldface).

Table 1: Average Best Fitnesses by GA’s on Test Suite

D4 F2 F4 Rastrigin Knapsack

TBGA 9.67 0 -3.049 1.14 0

CGA 9.93 .00016 -3.047 2.3 0

Figure 4: Test Results for Ugly Deceptive Function

In the deceptive function (D4), Figure 4 shows clearly
that the TBGA starts more slowly than the hand-tuned
CGA, but ultimately produces better solutions than the
CGA. We continued running the algorithm further (to
2500 generations), but the relative performance indicated
in Figure 4 did not change.

In DeJong’s F2 function, Figure 5 shows the TBGA
significantly outperform the hand-tuned CGA. All TBGA
runs had solved the problem before the 318th generation,
whereas some of the CGA runs had not solved the
problem even after 500 generations.

Figure 5: Test Results for DeJong’s F2 Function

In DeJong’s F4 function, the performance of the two
algorithms is nearly indistinguishable. We ran the
algorithms to 1000 generations, after which the TBGA
was finding, on average, slightly better but practically
identical solutions as the CGA.

The Rastrigin function was clearly optimized more
effectively by the TBGA than the hand-tuned CGA, as
shown in Figure 6. The latter appears to have prematurely
converged.

The Knapsack function was the only one in which the
TBGA was outperformed by the CGA. The performance
difference was very slight, as shown in Figure 7. Note that
the TBGA was the fastest algorithm at finding very good
solutions, although ultimately the hand-tuned CGA found
the global optimum slightly sooner (all runs by the 31st
versus 34th generations, respectively).

Additionally, we ran some tests with a TBGA that varied
only one of the parameters at a time. This was done to
ensure that we ruled out independent effects of the
application of TBGA method to each parameter. The
TBGA performed best when both parameters were varied
along the axes, and so we do not report those results here.

DeJong's F2

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

0 50 100 150 200

GENERATIONS

B
E
S
T

S
T
R
I
N
G

CGA - hand tuned

TBGA

CGA - tbga tuned

UGLY DECEPTIVE FUNCTION

8

9

10

11

12

0 200 400 600 800 1000 1200 1400

GENERATIONS

B
E
S
T

S
T
R
I
N
G

CGA - hand tuned

TBGA

CGA - tbga tuned

Figure 6: Test Results for the Rastrigin Function

Figure 7: Test Results for the Knapsack Function

6 FINDING GOOD PARAMETER
SETTINGS

The experiments described above led us to question
whether the parameters chosen for the CGA were in fact
the best, or even good. Of course we had no way of
answering that question, short of trying all combinations
of parameter settings. We theorized that the TBGA might
be a useful tool for finding good parameter settings to use
in a standard CGA. To do this, we needed to find where
(physically) in the population structure the best solutions
were evolving. We could then utilize the parameter
settings that existed at that location, and run a CGA, fixed
at those settings, on the same problem.

We started by having the TBGA report the location of
each newly found current best string. Unfortunately, these
locations did not always cluster around specific areas, but
rather were spread around the grid, over a fairly wide
range of parameter settings. So in lieu of a better

indicator, we simply tallied, for each location, the number
of times a new current best string appeared there. From
this we produced a weighted average of the parameter
settings at those locations. This did provide a single set of
parameter values that we could try in the CGA.

For example, suppose we were using a 3x3 grid, and say
that we ran the TBGA for 10 generations, tallying, for
each cell, how often a new current best string appeared
there. Since each cell also has a unique value for mutation
we might tally data similar to that shown in Table 2. The
suggested mutation rate would then be the sums of the
mutation rates, weighted by the tallies, or:

[5*(.01) + 3*(.02) + 2*(0)]/10 = .011

After using this technique to find suggested parameter
settings for each problem, we then re-ran the experiments
above (with the exception of DeJong’s F4) using the
parameter values suggested by the TBGA. In every case,
using the parameters suggested by TBGA greatly
improved the performance of the CGA to such an extent
that it even outperformed the TBGA. We observed this
whether we substituted one or both of the suggested
parameter values. Here we report only the results when
substituting both suggested parameter values.

Table 2: Example Tally for Finding Mutation Rate

CELL Mutation Rate #bests

(1,1) 0 0

(1,2) 0 0

(1,3) 0 2

(2,1) .01 0

(2,2) .01 5

(2,3) .01 0

(3,1) .02 3

(3,2) .02 0

(3,3) .02 0

The particular parameter values suggested by the TBGA
in the manner described above are next shown in Table 3.

RASTRIGIN FUNCTION

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500

GENERATIONS

B
E
S
T

S
T
R
I
N
G

CGA - hand tuned

TBGA

CGA - tbga tuned

KNAPSACK PROBLEM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 20 30 40
GENERATIONS

B
E
S
T

S
T
R
I
N
G

legend
same as
above

Table 3: Parameter Values Suggested by TBGA

D4 F2 Rastrigin Knapsack

Mutation
rate

.0186 .0463 .00328 .0336

#Xover pts 8 6 12 6

Figures 4-7 also include the tests of the CGA tuned with
the TBGA-suggested parameter values. The results are
striking: in every case, the parameter values suggested by
the TBGA produces markedly better results than both
TBGA and the original CGA, with the TBGA performing
roughly in between.

7 CONCLUSIONS

The Terrain-Based Genetic Algorithm (TBGA) is a self-
tuning version of the traditional Cellular Genetic
Algorithm (CGA) in which parameter values are spread
around the population forming a sort of terrain in which
individuals evolve. Preliminary results have shown the
TBGA to be useful both as a GA function optimizer, and
as a powerful tool for extracting better performance from
a CGA. The algorithm is simple to implement and easier
to use than a CGA as it requires less parameter tuning.

The performance of the TBGA as a function optimizer, as
compared to our CGA, is a pleasant surprise. We
conducted our experiments expecting the CGA, with it’s
parameters tuned during a previous study, to outperform
the TBGA. Instead, we watched the TBGA, without any
tuning at all, immediately outperform our CGA on the
majority of functions in our test suite. This indicates that
the TBGA may have good potential as a general-purpose
workhorse genetic algorithm.

We also expected the TBGA to solve problems in such a
way that the solutions were clustered around particular
parameter settings. In fact, we saw the best solutions
spread over a fairly wide range of parameter settings.
Perhaps the TBGA is utilizing each of the various
parameter settings in some collective manner,
representing an essentially different algorithm than any
genetic algorithm with fixed parameter settings. More
study is needed to determine whether the TBGA exhibits
a discernible pattern of parameter utilization. Further
study is also needed to explore how best to apply a TBGA
when more than two parameters require tuning.

Despite the lack of obvious clustering of good solutions in
a TBGA’s population structure, we were still able to
utilize the locations of good TBGA solutions as an
indicator for good CGA parameter settings. We used a
simple method of counting the frequency of best strings
for each cell, and were surprised to find that the parameter
settings suggested by computing a weighted sum of the

corresponding parameter values were superior when used
in our CGA on our test suite.

The TBGA is not only a promising method for solving
optimization problems, it is also a vehicle for finding very
good parameter values to use in existing programs. We do
not know whether the TBGA can be further modified in
such a way as to outperform all CGAs, or whether a
CGA, fine-tuned by a TBGA, always produces the best
results. Further study needs to be done in this area.

Acknowledgements

This work was supported in part by a California State
University RSCAP grant.

The authors also wish to thank the anonymous reviewers
for their careful reading and insightful comments.

References

T. Back (1993). Optimal Mutation Rates in Genetic
Search. Proceedings of the 5th International Conference
on Genetic Algorithms, pg 2.

S. Baluja (1993). Structure and Performance of Fine-
Grain Parallelism in Genetic Search. Proceedings of the
5th International Conference on Genetic Algorithms, pg
155.

A. Bohm and G. Egan (1992). Five Ways to Fill Your
Knapsack. Proceedings of the Second Sisal Workshop,
LLNL CONF-9210270.

Y. Davidor and O. Ben-Kiki (1992). The Interplay
Among the Genetic Algorithm Operators: Information
Theory Tools used in a Holistic Way. Parallel Problem
Solving from Nature 2, pg 75.

K. DeJong (1975). An Analysis of the Behavior of a Class
of Genetic Adaptive Systems. PhD thesis, University of
Michigan.

T. C. Fogarty (1989). Varying the Probability of Mutation
in the Genetic Algorithm. Proceedings of the 3rd
International Conference on Genetic Algorithms, pg 104.

D. Goldberg (1989). Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley.

D. Goldberg (1989). Sizing Populations for Serial and
Parallel Genetic Algorithms. Proceedings of the 3rd
International Conference on Genetic Algorithms, pg 70.

D. Goldberg, B. Korb, and K. Deb (1989). Messy Genetic
Algorithms: Motivation, Analysis, and First Results.
Complex Systems 3, pg 493.

V. Gordon, A. Bohm, and D. Whitley (1994). A Note on
the Performance of Genetic Algorithms on Zero-One
Knapsack Problems. ACM Symposium on Applied
Computing (SAC’94), Genetic Algorithms and
Combinatorial Optimization Track, pg 194.

V. Gordon, K. Mathias, and D. Whitley (1994). Cellular
Genetic Algorithms as Function Optimizers: Locality
Effects. ACM Symposium on Applied Computing
(SAC’94), Genetic Algorithms and Combinatorial
Optimization Track, pg 237.

V. Gordon and D. Whitley (1993). Serial and Parallel
Genetic Algorithms as Function Optimizers. Proceedings
of the 5th International Conference on Genetic
Algorithms, pg 177.

M. Gorges-Schleuter (1989). ASPARAGOS - An
Asynchronous Parallel Genetic Optimization Strategy.
Proceedings of the 3rd International Conference on
Genetic Algorithms, pg 422.

J. Grefenstette (1986). Optimization of Control
Parameters for Genetic Algorithms. IEEE Transactions
on Systems, Man, and Cybernetics, Vol SMC-16, No.1,
January/February 1986, pg 122.

H. Muhlenbein, M. Schomisch, and J. Born (1991). The
Parallel Genetic Algorithm as Function Optimizer.
Proceedings of the 4th International Conference on
Genetic Algorithms, pg 271.

B. Manderick and P. Spiessens (1989). Fine-Grained
Parallel Genetic Algorithms. Proceedings of the 3rd
International Conference on Genetic Algorithms, pg 428.

J. D. Schaffer, R. Caruana, L. Eshelman, and R. Das
(1989). A Study of Control Parameters Affecting Online
Performance of Genetic Algorithms for Function
Optimization. Proceedings of the 3rd International
Conference on Genetic Algorithms, pg 51.

N. Schraudolph and R. Belew (1990). Dynamic
Parameter Encoding for Genetic Algorithms. CSE
Technical Report #CS 90-175, University of California,
San Diego Computer Science and Engr. Dept.

R. Smith (1993). Adaptively Resizing Populations: An
algorithm and analysis. (TCGA Report No. 93001)
Tuscaloosa: University of Alabama.

S. Tsutsui and Y. Fujimoto (1993). Forking Genetic
Algorithm with Blocking and Shrinking Modes (fGA).
Proceedings of the 5th International Conference on
Genetic Algorithms, pg 206.

D. Whitley (1991). Fundamental Principles of Deception
in Genetic Search. Foundations of Genetic Algorithms.
Morgan Kaufmann, pg 221.

D. Whitley (1993). Cellular Genetic Algorithms.
Proceedings of the 5th International Conference on
Genetic Algorithms, pg 658.

