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Abstract—A modular neural network works by dividing 
the input domain into segments, assigning a separate neural 
network to each sub-domain. This paper introduces the 
self-splitting modular neural network, in which the 
partitioning of the input domain occurs during training. It 
works by first attempting to solve a problem with a single 
network. If that fails, it finds the largest chunk of the input 
domain that was successfully solved, and sets that aside. 
The remaining unsolved portion(s) of the input domain are 
then recursively solved according to the same strategy. 
Using standard backpropagation, several large problems 
are shown to be solved quickly and with excellent 
generalization, with very little tuning, using this divide-and-
conquer approach. 
 
 
 I.  INTRODUCTION 
 

EURAL networks traditionally attempt to solve 
problems by replicating the behavior codified in a 

training set. A variety of training methods for supervised 
learning exist. Backpropagation, for example, adjusts the 
network weights until the desired outputs are produced 
for each example in the training set, within given criteria. 
However, there are times when a training set is so large, 
or the problem so complex, that the network never learns 
it completely, or learning is too slow to be practical. 

Any time that a problem is too large to be solved by 
any one method or model, it is natural to attempt to use a 
divide-and-conquer approach, by breaking the problem 
into smaller pieces and solving the pieces separately. In 
the case described above, one way of doing this is by 
applying more than one neural network to the problem at 
hand. Such systems are often called multi-nets. When a 
multi-net is configured so that the computations of 
multiple networks are combined into a single answer, it 
is called an ensemble. When a multi-net is configured so 
that each case is handled by just one of the networks, it is 
called a modular network. 
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II. MODULAR NEURAL NETWORKS 
 

In a modular neural network, each network is 
assigned a portion of the input domain. The input domain 
is divided into partitions, and a separate network is 
assigned to each partition. After each network is trained, 
the modular system can be used on other, non-trained 
cases by directing the input to whichever network was 
trained on the portion of the domain in which the input 
belongs. 

 
 

 
 

Fig. 1.  Modular Network Architecture 
 
 
 
In Figure 1, the inputs are routed to one of the 

networks (here shown as either Domain A or Domain B), 
depending in which portion of the input space those input 
values are contained. Whichever one network is assigned 
to those inputs, it (and it alone) produces the 
corresponding output values. 

Modular neural networks were first described in the 
early 1990s by various researchers [1], [2] and explored 
further by Sharkey [3], [4]. Chen et al. used a divide-and-
conquer method to assign one or more networks to each 
case, in a sort of hybrid modular/ensemble approach [5]. 
Olsen-Darter and Gordon used a modular configuration 
of 120 neural networks for a vehicle control application, 
but the division of the input domain was determined by 
experimentation [6]. 
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III. INPUT DOMAIN PARTITIONING 
 
Dividing the input domain into segments must take 

into account the multi-dimensionality of most problems. 
For example, a problem with 5 inputs has an input 
domain which can be divided along any combination of 
its 5 dimensions. Each input variable has its own range, 
and could be split independently. Splitting one variable 
at one value effectively divides the entire input domain 
into two pieces. Similarly, splitting all five variables in 
half simultaneously would create 32 separate partitions. 
Which dimension(s) to divide, and where, are the focus 
of this paper. 

 
A. Partitioning by Hand 

In a previous study, Olsen-Darter and Gordon [6] 
described partitioning an input domain of five variables 
by hand-selecting a number of divisions for each 
variable. Some variables were divided into 2 equal 
partitions, others into 3 or 5 equal partitions. The input 
domain was thus segmented into 120 equal-sized sub-
domains, and each was assigned its own separate neural 
network. Each training case was then examined to see in 
which sub-domain it belonged, and was then routed to 
the appropriate network. The multi-net successfully 
learned a large training set (30,720 cases). The splitting 
of input variables was arrived at by trial and error. 

Partitioning by hand proved to be tedious, and it is 
not clear if a significant improvement could be obtained 
by choosing a different set of partitions. It also is not 
clear whether equal partitions is necessarily best, or 
whether there are more effective values on which to 
partition depending on the problem. A more effective 
partitioning might result in faster training, or result in 
fewer networks being required to learn the training set. 

 
B. Automatic Partitioning, or Self Splitting 

Rather than partitioning the input domain ahead of 
time, our approach is to try to learn the training set using 
as few networks as possible. The self-splitting approach 
starts with a single network, and proceeds as follows: 

 
ALGORITHM 1 – SELF SPLITTING FRAMEWORK 

 
1. attempt to solve the training set 
2. if success, the input domain is solved ... stop. 
3. if failure: 
 (a) select a variable and value(s) for splitting 
 (b) assign new network(s) to each sub-domain 
 (c) distribute training cases by sub-domain 
 (d) recursively apply algorithm 1 to each network 
 
Apply recursively until all networks learn their subset 
of the training cases. 

Note that a modular network trained according to the 
framework given in algorithm 1 will invariably result in 
a set of networks with varying sizes of input sub-
domains. That is, some domains will solve more quickly 
and require less splitting than others. This is unlike the 
hand-partitioning described earlier [6], where partitions 
were of equal size regardless of the nature and subtlety 
of the data in the various partitions. 

The framework still leaves undefined how a variable 
is chosen, and where the split occurs. We examined two 
splitting methods: by centroid, and by trained region: 

 
1)  Splitting by Centroid 

One simple and natural approach to selecting a split 
point is to split variables in a round-robin fashion, thus 
splitting on the next variable who’s turn it is to split. To 
do this, each variable is given a sequence number, and 
each network needs to keep track of which variable was 
split when its sub-domain was defined. Then, if the 
network fails to train, it is split on the next variable in 
turn, dividing the sub-domain into two sub-sub-domains. 
When splitting by centroid is used, a variable is split in 
exactly one point, producing two unsolved partitions. 

 
2)  Splitting by Trained Region 

An alternative method for selecting split point(s) is 
to first examine the results of training. Even though the 
network failed to learn its entire training set, that does 
not mean that it learned nothing. In fact, it may have 
learned a substantial portion of the training set. It is 
possible, in most cases, to extract the trained portion, and 
split along the solved partition boundaries. 

For example, consider the case where a network is 
training on a problem of 5 variables (A, B, C, D, and E), 
and it manages to learn every training case where the 
value of C was in the range [4.0 ... 6.0]. That network 
could then be permanently assigned the following 
partition: 

 
A: all values in original domain 
B: all values in original domain 
C: [4.0 ... 6.0] 
D: all values in original domain 
E: all values in original domain 
 

When splitting by trained region is used, a variable’s 
domain is split at two points x and y, producing one 
solved partition and two unsolved partitions: 

 
 

unsolved solved unsolved 

min x y max 
 

Fig. 2.  Splitting by trained region 



 

 

Continuing the example described above, the two 
unsolved sub-domains (regions) would be: 

 
A: all values in original domain 
B: all values in original domain 
C: [min ... 4.0] 
D: all values in original domain 
E: all values in original domain 

 
and 
 

A: all values in original domain 
B: all values in original domain 
C: [6.0 ... max] 
D: all values in original domain 
E: all values in original domain, 

 
where min and max are the extrema of the values for C in 
the original domain (or sub-domain if this is already a 
recursively-defined sub-domain). 

It is possible, even likely, that trained regions can be 
identified for more than one variable. As well, there may 
be more than one solved region for a particular variable. 
Our approach is to find the largest solved region. In that 
way, we try to favor networks that generalize rather than 
networks that specialize. 

Here, for completeness, it should be noted that it is 
possible for a region to occur on one end of a variable’s 
domain, for example if all training cases are solved when 
a particular variable is greater than some value x. In such 
cases, the domain is partitioned at one point, producing 
two partitions, one solved and one unsolved: 

 
 

unsolved solved 
min x max 

 
Fig. 3.  Splitting by trained region, special case 

 
 

IV. FINDING TRAINED REGIONS 
 
Assuming that training has failed to converge after 

the specified maximum number of training epochs, the 
next step in a self-splitting network is to search for the 
largest successfully trained region. Each variable needs 
to be checked for trained regions, and in case there exist 
multiple trained regions, the largest is selected. 

The process begins by sorting the training data on 
the first input variable. The training set is then scanned 
for the largest contiguous number of pairs for which the 
unsuccessfully trained network had produced an output 
that was within the training criterion. Note that if two or 
more training cases have the same value for the variable 
in question, that all cases with that value must output 
correctly for that value to be considered successfully 

contained within a trained region. This is because if there 
is even one occurrence of a variable’s value for which it 
did not train successfully, then that value was not 
completely learned. 

Algorithm 2 illustrates the process of identifying the 
largest trained region: 

 
 

ALGORITHM 2 – IDENTIFYING REGION BOUNDARIES 
 
1. For each input s of the current network: 
 
 (a) sort the training pairs on s 
 (b) scan the pairs from lowest to highest value 
 (c) find the subrange mins...maxs for which: 
  (i) all pairs within mins...maxs are solved, and 
  (ii) no other subrange contains more such pairs 
 
 (d) if the size of subrange is greater than any found 
  so far (for other inputs), copy s and mins...maxs 
  into i and mini...maxi. 
 
2. If an input (i) with a trained region was found, 
  split on variable i and subrange mini...maxi  
 else 
  split by centroid on the variable with the 
  largest domain. 
 

 
Consider the following very small illustrative 

example, showing training data and associated training 
results. An “X” indicates that the network output was 
sufficiently within the training criteria. Absence of an 
“X” indicates that the network failed to learn that case: 

 
 

case # input A input B success 

1 15.5 2 X 
2 8.5 4  
3 12.0 1 X 
4 19.0 0 X 
5 19.0 1  
6 6.0 3 X 
7 12.0 6 X 

 
Fig. 4.  Training data (example), with results 

 
 
The example data above includes 7 training cases. 

The problem has two inputs, A and B. Expected and 
actual output values are not shown. However, an X 
indicates that the actual output was correct to within the 
training criteria. We start by sorting the training data on 
input A, as shown in Figure 5: 



 

 

case # input A input B success 

6 6.0 3 X 
2 8.5 4  
3 12.0 1 X 
7 12.0 6 X 
1 15.5 2 X 
4 19.0 0 X 
5 19.0 1  

 
Fig. 5.  Training data sorted on input A 

 
At first glance, it would appear that there is a 

contiguous trained region of size 4, for input A over the 
range 12.0...19.0.  However, upon closer inspection, the 
value 19.0 cannot be included in this range, because 
there is a training case for which the value of A=19.0 
was not successful (case #5). Therefore, the largest 
contiguous training region found for variable A is 
actually of size 3, and is for the subrange 12.0...15.5. 

We next sort the training data on input B, as shown 
in Figure 6: 

 
 

case # input A input B success 

4 19.0 0 X 
3 12.0 1 X 
5 19.0 1  
1 15.5 2 X 
6 6.0 3 X 
2 8.5 4  
7 12.0 6 X 

 
Fig. 6.  Training data sorted on input B 

 
Clearly, for input B, the largest trained region is of 

size 2 and is for the subrange 2...3.  Since this region is 
smaller than the largest region found for input A, we 
would choose to split on input A. This gives rise to the 
following definition of trained and untrained regions: 

 
untrained region: 
 input A 6.0...12.0 
 input B 0...6 (all values in original domain) 
 cases: 6, 2, 3, 7 
 
trained region: 
 input A 12.0...15.5 
 input B 0...6 (all values in original domain) 
 cases: 3, 7, 1 
 
untrained region: 
 input A 15.5...19.0 
 input B 0...6 (all values in original domain) 
 cases: 1, 4, 5 

For the trained region, we store both the ranges of 
input values, and the network weights. Note that these 
weights represent a neural network configuration that 
was successfully used to solve the cases in that range. 
The untrained regions are assigned to new neural 
networks which are trained just on those cases. Since 
there are fewer training cases for each of those sub-
domains, they represent smaller problems than the 
original, and thus a divide-and-conquer strategy. 

Note that we have also decided to overlap the 
regions. This is in an effort to ensure that the entire range 
of possible values is sufficiently modeled. Overlapping 
does give rise to certain details that must be considered 
to avoid a runaway splitting, which can happen when a 
sub-domain is the same as the original domain. These 
problems are solved by verifying the cardinality of 
training cases before and after splitting. 

It is possible that no trained regions are found. This 
can happen if for all solved cases there happen to exist 
other unsolved cases that have duplicate input values. 
When no trained regions are found, or if all trained 
regions would give rise to a runaway split (one that 
duplicates an untrained region), we perform splitting by 
centroid, so that the divide-and-conquer strategy can 
continue anyway. 

It is then also possible for splitting by centroid to 
fail, for the same reasons as described above for splits by 
trained region. When this happens, training fails. This 
situation is most likely to occur when the training data 
contains large numbers of duplicate input values, such as 
when training cases are made up of many permutations 
of a few input values on several variables. Sometimes 
this situation can be mitigated by adding a small amount 
of noise to the input values beforehand. 

Even if training fails, it is possible for training to 
proceed by eliminating one or more of the overlap 
points, although when this is done there is of course a 
risk of poorer modeling of the application problem. 

 

V. RUNNING THE FULLY TRAINED MULTI-NET 

After all neural networks have been successfully 
trained on their respective sub-domains, they can be 
tested or deployed on other cases: 

 
ALGORITHM 3 – RUNNING THE MULTI NET 

 
1. retrieve a set of new (untrained) inputs 
2. for each network, if the inputs are in its sub-domain, 
  compute the output of the network (there is 
  usually only one such network). 
3. if only one network responded to step 2, the output 
  of that network is the output of the multi-net. 
 if more than one network responded, the final output 
  is averaged from the outputs of those networks. 



 

 

In Algorithm 3, the trained multi-net acts as a 
modular network, described in section 2. The only 
exception is in those cases where the inputs fall exactly 
on partition boundaries. In those cases, splitting had 
generated overlapping partitions, and more than one 
network may have been assigned to that situation. In 
those less frequent cases, the input falls within the 
domains of two different networks. Processing in those 
cases is similar to a small ensemble, where the outputs of 
the networks involved are averaged. An acceptable 
alternative would be to simply select one of the networks 
at random, since both networks were trained successfully 
on the boundary case and both should therefore output 
very similar acceptable values. 

 

VI.  EXPERIMENTS 

We implemented the self-splitting modular network 
in C++, using the vector container class from the 
Standard Template Library (STL). It has a simple 
console-based user interface, with a configuration file 
given as a parameter on the command line. The 
configuration file includes problem specific settings, 
desired network topology (number of layers, nodes per 
layer, etc.), and the location of training and testing data. 
It currently runs on Windows and Linux workstations. 

For each experiment, we examined both the speed of 
learning and the ability of the final multi-net to 
generalize. In all comparisons, networks were given a 
maximum of one billion iterations (totaled amongst all 
networks in the multi-net) to converge, or the learning is 
considered to have failed. 

Standard backpropagation with momentum and 
scaling was used in each case. 

For each test problem, we tested: (a) a single neural 
network, (b) a multi-net using self-splitting by centroid, 
and (c) a multi-net using self-splitting by trained region. 
We always utilized the following parameters: 

 
Learning Rate 0.3 

Momentum 0.85 

Scaled input range 0.1 - 0.9 

Maximum iterations 
before splitting 1,000,000 

Fig. 7.  Experimental parameter settings 

 

A. Test Problems 

We used five problems which were obtained from 
the webpage of the Image Processing and Neural 
Networks Lab at the University of Texas at Arlington 
[7], and one problem obtained from the Carnegie Mellon 

University School of Computer Science AI Repository 
[8]. Details for each problem are shown in Figure 8: 

 
 

Problem Source # inputs / 
# outputs 

# training 
cases 

# testing 
cases 

FM demodulator UTA 5 / 1 1024 1024 

Arabic Numerals UTA 16 / 4 3000 3000 

Matrix Inversion UTA 4 / 4 2000 2000 

Power Load 
Forecasting UTA 12 / 1 1415 1413 

Surface Parameter 
Inversion UTA 8 / 7 1768 1000 

Two-Spiral CMU 2 / 1 1058 1056 

 
Fig. 8.  Test Problem Details 

The Arabic Numerals and Two-Spiral problems are 
classification tasks. The others are problems that require 
the network to approximate various functions. The Two-
Spiral problem was generated using CMU’s benchmark 
data set generation software [8]. 

For each test problem, we chose training criteria 
(permissible errors for outputs during training), testing 
criteria (permissible errors for outputs during testing), 
and network topology (number of nodes in each network 
layer, including bias nodes). These values are shown 
below in Figure 9: 

 
 

Problem Topology Training 
Criteria 

Testing 
Criteria 

FM demodulator 6-6-1 0.02 0.05 

Arabic Numerals 17-13-11-4 0.4 0.4 

Matrix Inversion 5-5-4 0.05 0.1 

Power Load 
Forecasting 13-13-1 2.0 2.5 

Surface Parameter 
Inversion 9-9-7 0.5 0.6 

Two-Spiral 3-4-1 0.4 0.4 

Fig. 9.  Test Problems and Network Details 

Descriptions of each test problem are shown in 
Figure 10. They are each taken (or paraphrased) from 
descriptions given in their source material. 



 

 

 
FM Demodulator – Trains the network to 

demodulate an FM signal that contains a 
sinusoidal message [7]. 

Arabic Numerals – Trains the network to recognize 
Arabic numerals written by different people [7]. 

Matrix Inversion – Trains the network to invert 
random 2x2 matrices [7]. 

Power Load Forecasting – Trains the network to 
forecast the power load for fifteen minutes from 
the current time based on the last ten minutes of 
power load and two control error values [7]. 

Surface Parameter Inversion – Trains the network 
to invert the surface scattering parameters from an 
inhomogeneous layer above a homogeneous half 
space, where both interfaces are randomly rough 
[7]. 

Two Spirals – Trains the network to distinguish on 
which of two intertwined spirals a point lays [8]. 

Fig. 10.  Test Problem Descriptions 

 

B. Results 

For each test problem, a single neural network was 
unable to converge successfully on the training data after 
one billion iterations, with the parameters and criteria as 
given earlier. 

Self-splitting modular networks fared considerably 
better. When splitting by centroid was used, 3 of the 6 
problems were solved. When splitting by trained region 
was used, 5 of the 6 problems were solved. The problems 
were solved with varying degrees of generalization, with 
the results summarized in Figure 11. Training Epochs is 
the total number of backpropagation iterations it took to 
completely solve the training data within the required 
training criteria. #Networks is the number of networks 
produced in the multi-net (due to splitting). 
Generalization is the percentage of (untrained) testing 
cases that produced outputs within the testing criteria, 
after training had completed. 

 
C. Discussion 

 
Examining the data, it is clear that splitting by 

trained region performs consistently better than splitting 
by centroid. This is not surprising, since it is an 
intuitively more intelligent approach, and one that 
leverages the work done during training. Splitting by 
centroid did perform slightly better in one case (Matrix 
Inversion), although the training was slower. 

Problem 
Training Epochs 

centroid vs. 
trained region 

# Networks 
centroid vs. 

trained region 

Generalization 
centroid vs. 

trained region 

FM 
demodulator 

284,884 
62,110 

250 
95 

89 % 
97 % 

Arabic 
Numerals 

unsolved 
11,074 

n/a 
58 

n/a 
84 % 

Matrix 
Inversion 

82,066 
61,223 

133 
204 

90 % 
86 % 

Power Load 
Forecasting 

unsolved 
unsolved 

n/a 
n/a 

n/a 
n/a 

Surface 
Parameter 
Inversion 

unsolved 
97,242 

n/a 
279 

n/a 
49 % 

Two-Spiral 45,350 
34,146 

45 
63 

94 % 
98 % 

Fig. 11.  Experimental Results 

VII. CONCLUSION 

Adding self-splitting to a standard neural network 
with backpropagation results in considerable 
improvement on the difficult problems that we tested. 
Only one of the problems was unable to train within the 
total time we allotted. 

When we first considered the self-splitting approach, 
we were concerned that subdividing the problems would 
adversely affect generalization by missing the “big 
picture.” Yet, despite the carving of the problems into 
dozens of sub-problems, generalization was generally 
very good, sometimes excellent. Only in one case was 
generalization after training poor. 

We contend that difficult problems, particularly 
those that represent real-world situations, are probably 
complex and multimodal in nature. Most pragmatic 
solution approaches strive to break such problems into 
manageable components, and our approach reflects this. 
In fact, in the one task that could be considered 
contrived, or requiring a unified model – the two-spiral 
problem – generalization is extremely good (98%) 
despite the problem being divided into 63 pieces. 

Unlike previous studies, automatic splitting requires 
no analysis of the problem to help decide how to 
subdivide it. 

Our experiments involved virtually no special tuning 
for each of the various problems. The only settings made 
were topology of the network, which we generally set 
such that the number of nodes in each hidden layer was 
equal to the number of inputs +1 (to account for the bias 
node). It is possible that, had we taken more effort to 
hand-tune the topology for each problem, performance 
might have been even better. 



 

 

VIII. FUTURE WORK 

The self-splitting modular neural network raises a 
number of questions. Obviously, we should re-examine 
our parameter choices and see if other selections would 
work better with this algorithm. Similarly it is possible 
that some long-held assumptions could be re-examined. 

For instance, it is commonly assumed that training 
cases should be randomly shuffled prior to training, 
rather than sorted. Perhaps, since the splitting algorithm 
is attempting to find useful chunks within the sub-
domain, it would be useful to do some sorting before 
training, such as on one of the input variables (while 
leaving the others unsorted). This might encourage the 
formation of larger sub-domains on which to split, 
reducing the number of networks produced. 

An even more logical change would be to replace 
backpropagation with a training method that can utilize a 
fitness function. This would enable us to drive the 
training by rewarding solutions that find larger chunks, 
rather than solutions that reduce sum squared error. In a 
related work, a simple random annealing method is 
shown to be suitable and effective for this task [9]. 

The splitting algorithm itself, as described in this 
article, is a simple one utilizing only one dimension at a 
time. More sophisticated methods which look for solved 
chunks across multiple dimensions, or via clustering 
techniques, need to be explored. 

Finally, there is nothing about the splitting algorithm 
that inherently requires the use of supervised learning – 
or even the use of neural networks. We have not yet tried 
using the splitting algorithm with other training methods, 
nor with even simpler approximation techniques. 
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