

Self-Splitting Modular Neural Network –

Domain Partitioning at Boundaries of Trained Regions

 V. Scott Gordon and Jeb Crouson

Abstract—A modular neural network works by dividing
the input domain into segments, assigning a separate neural
network to each sub-domain. This paper introduces the
self-splitting modular neural network, in which the
partitioning of the input domain occurs during training. It
works by first attempting to solve a problem with a single
network. If that fails, it finds the largest chunk of the input
domain that was successfully solved, and sets that aside.
The remaining unsolved portion(s) of the input domain are
then recursively solved according to the same strategy.
Using standard backpropagation, several large problems
are shown to be solved quickly and with excellent
generalization, with very little tuning, using this divide-and-
conquer approach.

 I. INTRODUCTION

EURAL networks traditionally attempt to solve
problems by replicating the behavior codified in a

training set. A variety of training methods for supervised
learning exist. Backpropagation, for example, adjusts the
network weights until the desired outputs are produced
for each example in the training set, within given criteria.
However, there are times when a training set is so large,
or the problem so complex, that the network never learns
it completely, or learning is too slow to be practical.

Any time that a problem is too large to be solved by
any one method or model, it is natural to attempt to use a
divide-and-conquer approach, by breaking the problem
into smaller pieces and solving the pieces separately. In
the case described above, one way of doing this is by
applying more than one neural network to the problem at
hand. Such systems are often called multi-nets. When a
multi-net is configured so that the computations of
multiple networks are combined into a single answer, it
is called an ensemble. When a multi-net is configured so
that each case is handled by just one of the networks, it is
called a modular network.

 Manuscript received November 30, 2007.
V. Scott Gordon is with the Computer Science Department at

California State University, Sacramento, CA 95819 USA (phone: 916-
278-7946, email: gordonvs@ecs.csus.edu).

Jeb Crouson was also with the Computer Science Department at
California State University, Sacramento (crousonj@ecs.csus.edu).

II. MODULAR NEURAL NETWORKS

In a modular neural network, each network is
assigned a portion of the input domain. The input domain
is divided into partitions, and a separate network is
assigned to each partition. After each network is trained,
the modular system can be used on other, non-trained
cases by directing the input to whichever network was
trained on the portion of the domain in which the input
belongs.

Fig. 1. Modular Network Architecture

In Figure 1, the inputs are routed to one of the

networks (here shown as either Domain A or Domain B),
depending in which portion of the input space those input
values are contained. Whichever one network is assigned
to those inputs, it (and it alone) produces the
corresponding output values.

Modular neural networks were first described in the
early 1990s by various researchers [1], [2] and explored
further by Sharkey [3], [4]. Chen et al. used a divide-and-
conquer method to assign one or more networks to each
case, in a sort of hybrid modular/ensemble approach [5].
Olsen-Darter and Gordon used a modular configuration
of 120 neural networks for a vehicle control application,
but the division of the input domain was determined by
experimentation [6].

N

III. INPUT DOMAIN PARTITIONING

Dividing the input domain into segments must take

into account the multi-dimensionality of most problems.
For example, a problem with 5 inputs has an input
domain which can be divided along any combination of
its 5 dimensions. Each input variable has its own range,
and could be split independently. Splitting one variable
at one value effectively divides the entire input domain
into two pieces. Similarly, splitting all five variables in
half simultaneously would create 32 separate partitions.
Which dimension(s) to divide, and where, are the focus
of this paper.

A. Partitioning by Hand

In a previous study, Olsen-Darter and Gordon [6]
described partitioning an input domain of five variables
by hand-selecting a number of divisions for each
variable. Some variables were divided into 2 equal
partitions, others into 3 or 5 equal partitions. The input
domain was thus segmented into 120 equal-sized sub-
domains, and each was assigned its own separate neural
network. Each training case was then examined to see in
which sub-domain it belonged, and was then routed to
the appropriate network. The multi-net successfully
learned a large training set (30,720 cases). The splitting
of input variables was arrived at by trial and error.

Partitioning by hand proved to be tedious, and it is
not clear if a significant improvement could be obtained
by choosing a different set of partitions. It also is not
clear whether equal partitions is necessarily best, or
whether there are more effective values on which to
partition depending on the problem. A more effective
partitioning might result in faster training, or result in
fewer networks being required to learn the training set.

B. Automatic Partitioning, or Self Splitting

Rather than partitioning the input domain ahead of
time, our approach is to try to learn the training set using
as few networks as possible. The self-splitting approach
starts with a single network, and proceeds as follows:

ALGORITHM 1 – SELF SPLITTING FRAMEWORK

1. attempt to solve the training set
2. if success, the input domain is solved ... stop.
3. if failure:
 (a) select a variable and value(s) for splitting
 (b) assign new network(s) to each sub-domain
 (c) distribute training cases by sub-domain
 (d) recursively apply algorithm 1 to each network

Apply recursively until all networks learn their subset
of the training cases.

Note that a modular network trained according to the
framework given in algorithm 1 will invariably result in
a set of networks with varying sizes of input sub-
domains. That is, some domains will solve more quickly
and require less splitting than others. This is unlike the
hand-partitioning described earlier [6], where partitions
were of equal size regardless of the nature and subtlety
of the data in the various partitions.

The framework still leaves undefined how a variable
is chosen, and where the split occurs. We examined two
splitting methods: by centroid, and by trained region:

1) Splitting by Centroid

One simple and natural approach to selecting a split
point is to split variables in a round-robin fashion, thus
splitting on the next variable who’s turn it is to split. To
do this, each variable is given a sequence number, and
each network needs to keep track of which variable was
split when its sub-domain was defined. Then, if the
network fails to train, it is split on the next variable in
turn, dividing the sub-domain into two sub-sub-domains.
When splitting by centroid is used, a variable is split in
exactly one point, producing two unsolved partitions.

2) Splitting by Trained Region

An alternative method for selecting split point(s) is
to first examine the results of training. Even though the
network failed to learn its entire training set, that does
not mean that it learned nothing. In fact, it may have
learned a substantial portion of the training set. It is
possible, in most cases, to extract the trained portion, and
split along the solved partition boundaries.

For example, consider the case where a network is
training on a problem of 5 variables (A, B, C, D, and E),
and it manages to learn every training case where the
value of C was in the range [4.0 ... 6.0]. That network
could then be permanently assigned the following
partition:

A: all values in original domain
B: all values in original domain
C: [4.0 ... 6.0]
D: all values in original domain
E: all values in original domain

When splitting by trained region is used, a variable’s
domain is split at two points x and y, producing one
solved partition and two unsolved partitions:

unsolved solved unsolved

min x y max

Fig. 2. Splitting by trained region

Continuing the example described above, the two
unsolved sub-domains (regions) would be:

A: all values in original domain
B: all values in original domain
C: [min ... 4.0]
D: all values in original domain
E: all values in original domain

and

A: all values in original domain
B: all values in original domain
C: [6.0 ... max]
D: all values in original domain
E: all values in original domain,

where min and max are the extrema of the values for C in
the original domain (or sub-domain if this is already a
recursively-defined sub-domain).

It is possible, even likely, that trained regions can be
identified for more than one variable. As well, there may
be more than one solved region for a particular variable.
Our approach is to find the largest solved region. In that
way, we try to favor networks that generalize rather than
networks that specialize.

Here, for completeness, it should be noted that it is
possible for a region to occur on one end of a variable’s
domain, for example if all training cases are solved when
a particular variable is greater than some value x. In such
cases, the domain is partitioned at one point, producing
two partitions, one solved and one unsolved:

unsolved solved
min x max

Fig. 3. Splitting by trained region, special case

IV. FINDING TRAINED REGIONS

Assuming that training has failed to converge after

the specified maximum number of training epochs, the
next step in a self-splitting network is to search for the
largest successfully trained region. Each variable needs
to be checked for trained regions, and in case there exist
multiple trained regions, the largest is selected.

The process begins by sorting the training data on
the first input variable. The training set is then scanned
for the largest contiguous number of pairs for which the
unsuccessfully trained network had produced an output
that was within the training criterion. Note that if two or
more training cases have the same value for the variable
in question, that all cases with that value must output
correctly for that value to be considered successfully

contained within a trained region. This is because if there
is even one occurrence of a variable’s value for which it
did not train successfully, then that value was not
completely learned.

Algorithm 2 illustrates the process of identifying the
largest trained region:

ALGORITHM 2 – IDENTIFYING REGION BOUNDARIES

1. For each input s of the current network:

 (a) sort the training pairs on s
 (b) scan the pairs from lowest to highest value
 (c) find the subrange mins...maxs for which:
 (i) all pairs within mins...maxs are solved, and
 (ii) no other subrange contains more such pairs

 (d) if the size of subrange is greater than any found
 so far (for other inputs), copy s and mins...maxs
 into i and mini...maxi.

2. If an input (i) with a trained region was found,
 split on variable i and subrange mini...maxi
 else
 split by centroid on the variable with the
 largest domain.

Consider the following very small illustrative

example, showing training data and associated training
results. An “X” indicates that the network output was
sufficiently within the training criteria. Absence of an
“X” indicates that the network failed to learn that case:

case # input A input B success

1 15.5 2 X
2 8.5 4
3 12.0 1 X
4 19.0 0 X
5 19.0 1
6 6.0 3 X
7 12.0 6 X

Fig. 4. Training data (example), with results

The example data above includes 7 training cases.

The problem has two inputs, A and B. Expected and
actual output values are not shown. However, an X
indicates that the actual output was correct to within the
training criteria. We start by sorting the training data on
input A, as shown in Figure 5:

case # input A input B success

6 6.0 3 X
2 8.5 4
3 12.0 1 X
7 12.0 6 X
1 15.5 2 X
4 19.0 0 X
5 19.0 1

Fig. 5. Training data sorted on input A

At first glance, it would appear that there is a

contiguous trained region of size 4, for input A over the
range 12.0...19.0. However, upon closer inspection, the
value 19.0 cannot be included in this range, because
there is a training case for which the value of A=19.0
was not successful (case #5). Therefore, the largest
contiguous training region found for variable A is
actually of size 3, and is for the subrange 12.0...15.5.

We next sort the training data on input B, as shown
in Figure 6:

case # input A input B success

4 19.0 0 X
3 12.0 1 X
5 19.0 1
1 15.5 2 X
6 6.0 3 X
2 8.5 4
7 12.0 6 X

Fig. 6. Training data sorted on input B

Clearly, for input B, the largest trained region is of

size 2 and is for the subrange 2...3. Since this region is
smaller than the largest region found for input A, we
would choose to split on input A. This gives rise to the
following definition of trained and untrained regions:

untrained region:
 input A 6.0...12.0
 input B 0...6 (all values in original domain)
 cases: 6, 2, 3, 7

trained region:
 input A 12.0...15.5
 input B 0...6 (all values in original domain)
 cases: 3, 7, 1

untrained region:
 input A 15.5...19.0
 input B 0...6 (all values in original domain)
 cases: 1, 4, 5

For the trained region, we store both the ranges of
input values, and the network weights. Note that these
weights represent a neural network configuration that
was successfully used to solve the cases in that range.
The untrained regions are assigned to new neural
networks which are trained just on those cases. Since
there are fewer training cases for each of those sub-
domains, they represent smaller problems than the
original, and thus a divide-and-conquer strategy.

Note that we have also decided to overlap the
regions. This is in an effort to ensure that the entire range
of possible values is sufficiently modeled. Overlapping
does give rise to certain details that must be considered
to avoid a runaway splitting, which can happen when a
sub-domain is the same as the original domain. These
problems are solved by verifying the cardinality of
training cases before and after splitting.

It is possible that no trained regions are found. This
can happen if for all solved cases there happen to exist
other unsolved cases that have duplicate input values.
When no trained regions are found, or if all trained
regions would give rise to a runaway split (one that
duplicates an untrained region), we perform splitting by
centroid, so that the divide-and-conquer strategy can
continue anyway.

It is then also possible for splitting by centroid to
fail, for the same reasons as described above for splits by
trained region. When this happens, training fails. This
situation is most likely to occur when the training data
contains large numbers of duplicate input values, such as
when training cases are made up of many permutations
of a few input values on several variables. Sometimes
this situation can be mitigated by adding a small amount
of noise to the input values beforehand.

Even if training fails, it is possible for training to
proceed by eliminating one or more of the overlap
points, although when this is done there is of course a
risk of poorer modeling of the application problem.

V. RUNNING THE FULLY TRAINED MULTI-NET

After all neural networks have been successfully
trained on their respective sub-domains, they can be
tested or deployed on other cases:

ALGORITHM 3 – RUNNING THE MULTI NET

1. retrieve a set of new (untrained) inputs
2. for each network, if the inputs are in its sub-domain,
 compute the output of the network (there is
 usually only one such network).
3. if only one network responded to step 2, the output
 of that network is the output of the multi-net.
 if more than one network responded, the final output
 is averaged from the outputs of those networks.

In Algorithm 3, the trained multi-net acts as a
modular network, described in section 2. The only
exception is in those cases where the inputs fall exactly
on partition boundaries. In those cases, splitting had
generated overlapping partitions, and more than one
network may have been assigned to that situation. In
those less frequent cases, the input falls within the
domains of two different networks. Processing in those
cases is similar to a small ensemble, where the outputs of
the networks involved are averaged. An acceptable
alternative would be to simply select one of the networks
at random, since both networks were trained successfully
on the boundary case and both should therefore output
very similar acceptable values.

VI. EXPERIMENTS

We implemented the self-splitting modular network
in C++, using the vector container class from the
Standard Template Library (STL). It has a simple
console-based user interface, with a configuration file
given as a parameter on the command line. The
configuration file includes problem specific settings,
desired network topology (number of layers, nodes per
layer, etc.), and the location of training and testing data.
It currently runs on Windows and Linux workstations.

For each experiment, we examined both the speed of
learning and the ability of the final multi-net to
generalize. In all comparisons, networks were given a
maximum of one billion iterations (totaled amongst all
networks in the multi-net) to converge, or the learning is
considered to have failed.

Standard backpropagation with momentum and
scaling was used in each case.

For each test problem, we tested: (a) a single neural
network, (b) a multi-net using self-splitting by centroid,
and (c) a multi-net using self-splitting by trained region.
We always utilized the following parameters:

Learning Rate 0.3

Momentum 0.85

Scaled input range 0.1 - 0.9

Maximum iterations
before splitting 1,000,000

Fig. 7. Experimental parameter settings

A. Test Problems

We used five problems which were obtained from
the webpage of the Image Processing and Neural
Networks Lab at the University of Texas at Arlington
[7], and one problem obtained from the Carnegie Mellon

University School of Computer Science AI Repository
[8]. Details for each problem are shown in Figure 8:

Problem Source # inputs /
outputs

training
cases

testing
cases

FM demodulator UTA 5 / 1 1024 1024

Arabic Numerals UTA 16 / 4 3000 3000

Matrix Inversion UTA 4 / 4 2000 2000

Power Load
Forecasting UTA 12 / 1 1415 1413

Surface Parameter
Inversion UTA 8 / 7 1768 1000

Two-Spiral CMU 2 / 1 1058 1056

Fig. 8. Test Problem Details

The Arabic Numerals and Two-Spiral problems are
classification tasks. The others are problems that require
the network to approximate various functions. The Two-
Spiral problem was generated using CMU’s benchmark
data set generation software [8].

For each test problem, we chose training criteria
(permissible errors for outputs during training), testing
criteria (permissible errors for outputs during testing),
and network topology (number of nodes in each network
layer, including bias nodes). These values are shown
below in Figure 9:

Problem Topology Training
Criteria

Testing
Criteria

FM demodulator 6-6-1 0.02 0.05

Arabic Numerals 17-13-11-4 0.4 0.4

Matrix Inversion 5-5-4 0.05 0.1

Power Load
Forecasting 13-13-1 2.0 2.5

Surface Parameter
Inversion 9-9-7 0.5 0.6

Two-Spiral 3-4-1 0.4 0.4

Fig. 9. Test Problems and Network Details

Descriptions of each test problem are shown in
Figure 10. They are each taken (or paraphrased) from
descriptions given in their source material.

FM Demodulator – Trains the network to

demodulate an FM signal that contains a
sinusoidal message [7].

Arabic Numerals – Trains the network to recognize
Arabic numerals written by different people [7].

Matrix Inversion – Trains the network to invert
random 2x2 matrices [7].

Power Load Forecasting – Trains the network to
forecast the power load for fifteen minutes from
the current time based on the last ten minutes of
power load and two control error values [7].

Surface Parameter Inversion – Trains the network
to invert the surface scattering parameters from an
inhomogeneous layer above a homogeneous half
space, where both interfaces are randomly rough
[7].

Two Spirals – Trains the network to distinguish on
which of two intertwined spirals a point lays [8].

Fig. 10. Test Problem Descriptions

B. Results

For each test problem, a single neural network was
unable to converge successfully on the training data after
one billion iterations, with the parameters and criteria as
given earlier.

Self-splitting modular networks fared considerably
better. When splitting by centroid was used, 3 of the 6
problems were solved. When splitting by trained region
was used, 5 of the 6 problems were solved. The problems
were solved with varying degrees of generalization, with
the results summarized in Figure 11. Training Epochs is
the total number of backpropagation iterations it took to
completely solve the training data within the required
training criteria. #Networks is the number of networks
produced in the multi-net (due to splitting).
Generalization is the percentage of (untrained) testing
cases that produced outputs within the testing criteria,
after training had completed.

C. Discussion

Examining the data, it is clear that splitting by

trained region performs consistently better than splitting
by centroid. This is not surprising, since it is an
intuitively more intelligent approach, and one that
leverages the work done during training. Splitting by
centroid did perform slightly better in one case (Matrix
Inversion), although the training was slower.

Problem
Training Epochs

centroid vs.
trained region

Networks
centroid vs.

trained region

Generalization
centroid vs.

trained region

FM
demodulator

284,884
62,110

250
95

89 %
97 %

Arabic
Numerals

unsolved
11,074

n/a
58

n/a
84 %

Matrix
Inversion

82,066
61,223

133
204

90 %
86 %

Power Load
Forecasting

unsolved
unsolved

n/a
n/a

n/a
n/a

Surface
Parameter
Inversion

unsolved
97,242

n/a
279

n/a
49 %

Two-Spiral 45,350
34,146

45
63

94 %
98 %

Fig. 11. Experimental Results

VII. CONCLUSION

Adding self-splitting to a standard neural network
with backpropagation results in considerable
improvement on the difficult problems that we tested.
Only one of the problems was unable to train within the
total time we allotted.

When we first considered the self-splitting approach,
we were concerned that subdividing the problems would
adversely affect generalization by missing the “big
picture.” Yet, despite the carving of the problems into
dozens of sub-problems, generalization was generally
very good, sometimes excellent. Only in one case was
generalization after training poor.

We contend that difficult problems, particularly
those that represent real-world situations, are probably
complex and multimodal in nature. Most pragmatic
solution approaches strive to break such problems into
manageable components, and our approach reflects this.
In fact, in the one task that could be considered
contrived, or requiring a unified model – the two-spiral
problem – generalization is extremely good (98%)
despite the problem being divided into 63 pieces.

Unlike previous studies, automatic splitting requires
no analysis of the problem to help decide how to
subdivide it.

Our experiments involved virtually no special tuning
for each of the various problems. The only settings made
were topology of the network, which we generally set
such that the number of nodes in each hidden layer was
equal to the number of inputs +1 (to account for the bias
node). It is possible that, had we taken more effort to
hand-tune the topology for each problem, performance
might have been even better.

VIII. FUTURE WORK

The self-splitting modular neural network raises a
number of questions. Obviously, we should re-examine
our parameter choices and see if other selections would
work better with this algorithm. Similarly it is possible
that some long-held assumptions could be re-examined.

For instance, it is commonly assumed that training
cases should be randomly shuffled prior to training,
rather than sorted. Perhaps, since the splitting algorithm
is attempting to find useful chunks within the sub-
domain, it would be useful to do some sorting before
training, such as on one of the input variables (while
leaving the others unsorted). This might encourage the
formation of larger sub-domains on which to split,
reducing the number of networks produced.

An even more logical change would be to replace
backpropagation with a training method that can utilize a
fitness function. This would enable us to drive the
training by rewarding solutions that find larger chunks,
rather than solutions that reduce sum squared error. In a
related work, a simple random annealing method is
shown to be suitable and effective for this task [9].

The splitting algorithm itself, as described in this
article, is a simple one utilizing only one dimension at a
time. More sophisticated methods which look for solved
chunks across multiple dimensions, or via clustering
techniques, need to be explored.

Finally, there is nothing about the splitting algorithm
that inherently requires the use of supervised learning –
or even the use of neural networks. We have not yet tried
using the splitting algorithm with other training methods,
nor with even simpler approximation techniques.

REFERENCES
[1] R. A. Jacobs and M. I. Jordan, A Modular Connectionist

Architecture for Learning Piecewise Control Strategies. Proc. of
the American Control Conference, pp 343-351, 1991.

[2] S. D. Whitehead, J. Karlsson, and J. Tenenberg., Learning
Multiple Goal Behavior via Task Decomposition and Dynamic
Policy Merging. Robot Learning, MIT Press, 1992.

[3] A. Sharkey, On Combining Neural Networks, Connection
Science, 8(3/4): 299-314, 1996.

[4] Combining Artificial Neural Networks – Ensemble and Modular
Multi-Net Systems. ed. A. Sharkey, Springer-Verlag, 1999.

[5] K. Chen, L. Yang, X. Yu, and H. Chi, A Self-Generating Modular
Neural Network Architecture for Supervised Learning,
Neurocomputing 16: 33-48, 1997.

[6] M. Olsen-Darter and V. Gordon, Vehicle Steering Control Using
Modular Neural Networks, IEEE International Conference on
Information Reuse and Integration (IRI), pp 374-379, 2005.

[7] L. Pramod, Training Data Files, University of Texas at Arlington,
Image Processing and Neural Networks Lab, 26 April 2006:

 http://www-ee.uta.edu/eeweb/IP/training_data_files.htm
[8] M. White, Two-Spirals Benchmark Data Set Generator, 26 April

2006:http://www.cs.cmu.edu/afs/cs/project/ai-
repository/ai/areas/neural/bench/cmu/bench.tgz

[9] V. Gordon, Neighbor Annealing for Neural Network Training, to
appear in the International Joint Conference on Neural Networks
(IJCNN 2008).

