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Abstract—An extremely simple technique for training 
the weights of a feedforward multilayer neural network is 
described and tested. The method, dubbed “neighbor 
annealing” is a simple random walk through weight space 
with a gradually decreasing step size. The approach is 
compared against backpropagation and particle swarm 
optimization on a variety of training tasks. Neighbor 
annealing is shown to perform as well or better on the test 
suite, and is also shown to have pragmatic advantages. 

 
1. INTRODUCTION 

RAINING a standard feedforward neural network in 
a supervised manner requires finding a set of 
weights that allows the network to replicate the 

input/output pairs in a training set. Backpropagation is a 
commonly-used and method, and there are others. 

Backpropagation works by computing the output 
error, and then reducing that error by gradient descent 
[1]. It has certain pragmatic and performance limitations, 
fueling interest in alternative methods. Researchers have 
tested a variety of search techniques in place of 
backpropagation, such as genetic algorithms and particle 
swarm optimization (PSO). These methods can 
sometimes have advantages over backpropagation with 
respect to flexibility and/or performance. 

This paper describes an extremely simple technique 
for training the weights of a neural network, dubbed 
neighbor annealing. It is a sort of simplified version of 
simulated annealing with variable step size [2]. First 
results are shown on a variety of problems, and its 
efficacy is compared with backpropagation and PSO. 
Other advantages are discussed. 

 
II.  NEIGHBOR ANNEALING 

Neighbor annealing is a simple random walk 
through weight space with a gradually decreasing step 
size. It is, in a sense, a variant of simulated annealing. 
Both share an annealing schedule, and both utilize a 
single point in space from which a neighbor is randomly 
selected. However, they differ with respect to where their 
annealing is applied. In simulated annealing, a neighbor 
is chosen in a fixed manner, and then replaces the current 
point if it is a better solution, or probabilistically if the 
temperature is sufficiently high. 
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By contrast, neighbor annealing applies an annealing 

schedule to the neighborhood size. At the early stages, 
the neighborhood size is large enough to encompass the 
entire problem domain. At each iteration, neighborhood 
size is decreased, effectively limiting how far of a 
random jump is allowed. Eventually, when the 
neighborhood size reaches some predetermined 
minimum value (varies depending on the range of 
domain values), the search process stops. Also unlike 
simulated annealing, a jump to a lower fitness is never 
made. The basic steps are shown below in Algorithm 1: 

 
ALGORITHM 1 – NEIGHBOR ANNEALING (BASIC) 

 
1. select a random point P in domain(F). 
2. repeat: 
 (a) select a random neighbor R in S, where S is the 
  set of points in domain(F) ∩ (P-T ... P+T). 
 (b) if fitness(R) > fitness(P), replace P with R. 
 (c) decrease T according to annealing schedule. 
 
where: 
F  is the function being optimized, 
P and R are points in domain(F), 
fitness(x)  is a measure of the quality of F(x), and the 
vector T is neighborhood size expressed as temperature. 

 
 
Like simulated annealing, the process reduces to a 

sort of hill-climbing at the later stages. 
 

A.  Neighbor Annealing for Neural Networks 

Neighbor annealing can be applied to a variety of 
optimization tasks. This paper focuses on its application 
for tuning neural network weights. 

Adapting Algorithm 1 to training neural network 
weights is straightforward. P and R represent floating-
point weight vectors. T is a floating point scalar, 
initialized to a relatively large value for weight changes 
(typically 1.0). Since the early random steps are large, it 
is sufficient to initialize the weights in P to zero.  
Fitness(x) is calculated by first assigning the values of 
the weight vector (R) into a neural network, then running 
a standard forward pass for the entire training set in 
batch mode, and finally computing some measure of the 
resulting success or failure, such as accumulating a sum-
squared error. A simple annealing schedule could be to 
simply multiply T by a value close to (but less than) 1.0, 

T 



 

 

such as 0.9999. There is no backward pass. The entire 
training process is shown below in Algorithm 2: 

 
ALGORITHM 2 – NN TRAINING W/ NEIGHBOR ANNEALING 
 
1. Initialize P to [0.0, 0.0, … 0.0] 
 Initialize Sched < 1      (for example, Sched=0.9999) 
 Initialize T to 1.0 
 Initialize best_fitness = infinity 
 Rand = uniform random. 
 Training data consists of pairs of inputs I and 
  associated desired outputs D. 
2. repeat 
 (a) initialize error to 0 
 (b) R = P + [ Rand(-T…T), rand(-T…T)…] 
 (c) assign weight vector R to a neural network 
 (d) for each training pair (Ix, Dx): 
  (i) apply Ix to inputs 
  (ii) calculate outputs Ox  (forward pass) 
  (iii) error += (Dx – Ox)2 
 (e) if error < best_fitness, replace P with R 
 (f) T = T * Sched 
 until T < .0001 
 
Upon completion, P contains the trained weights. 

 
 
B.  Flexibility of Neighbor Annealing 

 Algorithm 2 (above) outlines a typical example of 
neighbor annealing for neural network weight training. 
But there is some flexibility for adapting training to the 
goals of the network. There are many parameter options: 
 
1) Annealing schedule 

 Although our first experiments utilized a simple 
multiplication annealing schedule, other schedules (such 
as linear or Boltzmann) could of course be utilized. 
 
2) Initial Step Size 

While the value shown (1.0) seems to work for 
many problems, for some problems larger values appear 
to be effective, sometimes even as high as 20.0 or 30.0.  
Similarly, the terminating criteria can sometimes be set 
to occur sooner, such as at 0.1 or even 0.2. 

 
3) Fitness computation and Error term 

 The method shown above corresponds to that used 
in backpropagation – namely, it computes the sum of the 
squares of the output errors (desired minus actual). 
However, there are times when it is useful to base the 
fitness on other factors. For example, one could instead 
count the number of training cases that were output 
correctly. In another study, the author utilizes a self-
splitting network [3], and in that setting an appropriate 

fitness measure would be to count the largest chunk of 
contiguous solutions found. Unlike backpropagation, 
neighbor annealing (like genetic algorithms and PSO) 
does not require any gradient information – for that 
matter, error information plays no role whatsoever in 
assigning the next set of weights to be considered. 
Therefore, any desired fitness measure can be used. 

4) Artificial neurons 

This study utilized networks built using standard 
artificial neurons. That is, they compute a weighted sum, 
and pass the sum through the standard logistic function. 
Other units could be used instead, such as perceptrons, 
because backpropagation’s reliance on a differentiable 
squashing function does not apply to neighbor annealing. 

 
III.  EXPERIMENTAL METHOD 

The shear simplicity of neighbor annealing for 
neural network weight training is appealing, and the 
pragmatic advantages outlined in 2.2 have been 
described. However, for it to be practically useful it 
would of course need to show promise in solving 
problems competitively with other training methods. 

For this first study, three weight training methods 
were implemented and compared: (1) backpropagation, 
(2) particle swarm optimization, and (3) neighbor 
annealing.  The settings of each are now described. 

 
A.  Backpropagation settings 

Except where noted, we used the backpropagation 
settings shown in Fig. 1: 

 
 
• α  (learning rate) = 0.3 
• µ  (momentum rate) = 0.8 
• Training / test data normalized to (0.1…0.9) 
• Threshold units (output=1) used at every layer 
 

Fig. 1.  backpropagation settings 

 

B. Particle Swarm Optimization settings 

Particle Swarm Optimization (PSO), introduced by 
Kennedy and Eberhart [4], has gained attention lately as 
an effective network training technique. PSO is based 
loosely on the concept of the clustering of species, such 
as the flocking of birds or the swarming of bees. This 
study utilized the basic PSO formulae for the changes in 
position and velocity shown in Fig. 2. 
 PSO can be used to train a neural network by 
assigning each particle to a separate neural network, 
specifically by including in each particle a complete set 
of weights for a possible neural network solution, where 
each weight is a dimension of the particle. PSO neural 



 

 

network training, like neighbor annealing, utilizes a 
fitness function. As described earlier, for this study a 
particle’s fitness is calculated by computing the output of 
the network for every point in the training set, and 
computing the sum of squares of the resulting errors. 

 
 

∆Vi  =   wVi + c1 r1i(maxi  - Pi )  +  c2 r2i(maxg  - Pi ) 
Pi (new)  =   Pi (old)  +  Vi 
 
where: 
Vi  =  velocity vector for particle i 
Pi  =  position vector for particle i 
r1  r2  =  uniform random vectors, in (0..1) 
c1  c2  =  guiding constants (set to 2.0 in this study) 
w  =  inertial constant (set to 0.5 in this study) 
maxi  =  best position of particle i, so far 
maxg  =  best position of any particle, so far 

 

Fig. 2.  PSO Training Algorithm [4] 
 
 PSO has a few other settings that must be chosen, 
such as the maximum allowable values for position and 
velocity, and the population size. These vary from 
problem to problem, and are listed later. 
 

C.  Normalizing Performance Measures 

For each test problem, an attempt is made to 
compare the algorithms fairly, by normalizing the 
amount of work they each do in order to reasonably 
assess their relative efficiency and effectiveness. To this 
end, a normalized interpretation of a work epoch is 
utilized. An epoch is defined as a single set of passes 
through the entire training data set. The following 
adjustments are made to ensure that the three algorithms 
are assessed for a roughly equivalent amount of work: 
 
1)  for neighbor annealing 

Each batch pass to evaluate a weight vector is 
considered a work epoch. 
 
2)  for backpropagation 

Since processing is done for each training pair 
separately, the total number of iterations is divided by 
the training set size. Then, the result is multiplied by 2, 
since there is an additional backward pass for each 
training pair. The resulting value is the number of work 
epochs. 

 
3)  for particle swarm 

Since each pass is applied to a swarm of weight 
vectors, the total number of iterations is multipled by the 
swarm size. The result is the number of work epochs. 

In addition, other steps are taken to ensure fair 
comparison: (1) training methods are always compared 
on equivalent network topologies, (2) criteria settings are 
equivalent for each algorithm on any given problem, and 
(3) the same training and testing data files are used for 
each algorithm on any given problem. 
 In some cases it was difficult to ensure that the exact 
same number of epochs occurred in each algorithm. This 
is because the annealing schedule as defined does not 
incorporate a setting for the total number of iterations. 
However, it was possible to adjust the annealing 
parameters to result in reasonably similar values. 

 
IV.  TEST PROBLEMS 

We used five problems of varying complexity, 
including two relatively simple problems, one problem 
of moderate difficulty, and two relatively hard problems. 
Three of the problems were obtained from a variety of 
sources, and the others were hand-constructed: 

 

Problem Source # inputs / 
# outputs 

# training 
cases 

# testing 
cases 

XOR n/a 2 - 1 4 - 

 BEAM [5] 4 - 1 10 6 

XOR regions n/a 2 - 1 100 16 

Snowplow [6] 5 - 1 1024 - 

2-Spiral [8] 2 - 1 1058 1056 

 
Fig. 3.   Test Problem Details 

 
The XOR problem is a simple truth table, but the 

outputs are in floating point space. The XOR regions 
problem extends the XOR problem to four quadrants of 
floating-point input/output in 2d space. The BEAM 
problem was taken from Adeli and Hung [5]. The 
Snowplow Driving problem was generated for the Olsen-
Darter study [6] using a complex set of nonlinear 
computations described by Gabibulayev et. al [7], and 
consists of training data only. The Two-Spiral problem 
was generated using CMU’s benchmark data set 
generation software [8]. 

For each test problem, we chose training criteria 
(permissible errors for outputs during training), testing 
criteria (permissible errors for outputs during testing), 
and network topology (number of nodes in each network 
layer, not including threshold units). The values we 
chose are shown below, in Fig. 4. 

Descriptions of each problem are shown in Fig. 5. 
They are each taken (or paraphrased) from descriptions 
given in their source material, if any. 



 

 

Problem Topology Training 
Criteria 

Testing 
Criteria 

other 
settings 

XOR 2-2-1 0.4 - 

Sched = 0.999 
initial temp = 1.0 
Swarm size = 20 
pMin/Max = +/-5 

BEAM 4-4-1 0.02 0.04 

Sched = 0.999 
initial temp = 1.0 
Swarm size = 10 
pMin/Max=+/-5 

XOR 
regions 2-4-1 0.3 0.3 

Sched = 0.99999 
initial temp = 0.5 
Swarm size = 50 
pMin/Max=+/-50 
µ = 0 

Snow 
Plow 5-5-1 2.0 - 

Sched = 0.9999 
initial temp = 1.0 
Swarm size = 20 
pMin/Max=+/-20 

2-Spiral 2-5-1 0.4 0.4 

Sched=0.9999 
initial temp = 0.5 
Swarm size = 20 
pMin/Max=+/-50 
µ = 0.8 

Fig. 4.   Test Problem Details 

 
 
 
XOR – Trains the network to correctly compute the 

exclusive-OR of its two inputs. 

BEAM – Trains the network to compute the 
minimum weight steel beam for a given loading 
condition [5]. 

XOR regions  – Trains the network to learn: 
   F(x,y) = 
   0 when x in [0..1] and y in [0..1], 
   1 when x in (1..2] and y in [0..1], 
   1 when x in [0..1] and y in (1..2], 
   0 when x in (1..2] and y in (1..2] 

Snowplow Driving – Trains the network to predict 
the location of a vehicle 3 seconds into the future, 
given a set of sensor values [6]. 

Two Spirals – Trains the network to distinguish on 
which of two intertwined spirals a point lays [8]. 

Fig. 5.   Test Problem Descriptions 

V.  RESULTS 

All of the neural networks were able to successfully 
learn the training sets of XOR, XOR regions, and BEAM. 
Those results are shown in Fig. 6, which compares how 
quickly each algorithm was able to learn the training 
data, and also how well each generalized on the test data.  

None of the algorithms were able to completely 
learn either the Snowplow or the 2-Spiral problems. 
Those results are shown in Fig. 7, which compares to 
what degree each algorithm was able to solve each 
problem, for roughly equivalent numbers of epochs. 

In each table, generalization is the percentage of 
(untrained) testing cases that produced outputs within the 
testing criteria, after training was complete. 

 
 

Problem 

Backprop 
• Train epochs 
• Residual error 
• Generalization 

PSO 
• Train epochs 
• Residual error 
• Generalization 

Neighbor 
Annealing 

• Training epochs 
• Residual error 
• Generalization 

XOR 
484 
0.43 
--- 

720 
0.26 
--- 

299 
0.33 
--- 

BEAM 
2630 
0.005 
83% 

580 
.005 
66% 

788 
.035 
100% 

XOR 
regions 

358,756 
1.95 
100% 

250,000 
1.4 
100% 

318,983 
1.87 
100% 

Fig. 6.   Results - 1 

 

Problem 

Backprop 
• Train epochs 
• Residual Error 
• % Trained 
• Generalization 

PSO 
• Train epochs 
• Residual Error 
• % Trained 
• Generalization 

Neighbor 
Annealing 

• Training epochs 
• Residual Error 
• % Trained 
• Generalization 

Snow 
Plow 

97,656 
0.28 
96% 
--- 

100,000 
.85 
84% 
--- 

92,099 
0.50 
90% 
--- 

Two 
Spiral 

189,035 
201.8 
6% 
6% 

100,000 
200.0 
26% 
26% 

85,000 
202.0 
27% 
27% 

Fig. 7.  Results - 2 



 

 

First results for neighbor annealing on this test suite 
look very promising. It is certainly competitive, actually 
outperforming both backpropagation and PSO in most 
cases. Generalization is as good or better than 
backpropagation and PSO in every case. In one problem 
(XOR regions), PSO displays the fastest learning. 

Some additional ad-hoc experimenting was done 
using neighbor annealing, substituting number of cases 
solved for the fitness function (instead of sum-squared 
error). This produced interesting results on the harder 
functions, shown below in Fig. 8. In these examples, the 
network topology was expanded to 2 hidden layers. 

 
 

Problem 

Neighbor Annealing 
2-4-4-1 

• Training epochs 
• % Trained 

XOR 
regions 

 5000     103,287 
  84%      100% 

Snow 
Plow 

 1000 
  34% 

2 Spiral  1000     10,000 
  56%       61% 

Fig. 8.  Additional Results 

 The solution for XOR regions is notably better with 
these settings, even better than the previous PSO results.  
And, while the 2-spiral problem is still far from being 
solved, a much larger portion of it has been trained. In all 
three cases, significant chunks of the problem have been 
solved very quickly. Although this is of marginal interest 
in isoloation, it could be very useful if a divide-and-
conquer strategy were being employed [3]. 

 
VI.  CONCLUSIONS 

A simple optimization technique called neighbor 
annealing was described, and then shown to be 
applicable to neural network weight training. Its 
characteristics were outlined, and shown to have benefits 
in terms of flexibility and adaptability to a variety of 
neural network settings. Its performance was compared 
against backpropagation and particle swarm optimization 
on a suite of five problems, and it was shown to be 
competitive with those existing methods on the suite. 

Neighbor Annealing is so simple that it could be 
characterized as trivial, or even primitive. That it should 
work rather well without tuning or modification, leads us 
to believe that it merits further study. 

VII. FUTURE WORK 

Further experiments are needed on a wider variety of 
difficult training sets. Also, more testing is needed using 
alternative fitness measures and annealing schedules. It 
would also be natural to consider more sophisticated 
methods for adjusting the neighborhood size, such as that 
used in the variable step size GSA (VSGSA) developed 
by Sutter and Kalivas [2]. 

We have begun a study combining the neighbor 
annealing presented here with the self-splitting network 
described in [3].  The flexibility of neighbor annealing, 
specifically for encouraging the identification of solved 
chunks, seems well-suited for this framework. 
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