

Neighbor Annealing for Neural Network Training

 V. Scott Gordon

Abstract—An extremely simple technique for training
the weights of a feedforward multilayer neural network is
described and tested. The method, dubbed “neighbor
annealing” is a simple random walk through weight space
with a gradually decreasing step size. The approach is
compared against backpropagation and particle swarm
optimization on a variety of training tasks. Neighbor
annealing is shown to perform as well or better on the test
suite, and is also shown to have pragmatic advantages.

1. INTRODUCTION

RAINING a standard feedforward neural network in
a supervised manner requires finding a set of
weights that allows the network to replicate the

input/output pairs in a training set. Backpropagation is a
commonly-used and method, and there are others.

Backpropagation works by computing the output
error, and then reducing that error by gradient descent
[1]. It has certain pragmatic and performance limitations,
fueling interest in alternative methods. Researchers have
tested a variety of search techniques in place of
backpropagation, such as genetic algorithms and particle
swarm optimization (PSO). These methods can
sometimes have advantages over backpropagation with
respect to flexibility and/or performance.

This paper describes an extremely simple technique
for training the weights of a neural network, dubbed
neighbor annealing. It is a sort of simplified version of
simulated annealing with variable step size [2]. First
results are shown on a variety of problems, and its
efficacy is compared with backpropagation and PSO.
Other advantages are discussed.

II. NEIGHBOR ANNEALING

Neighbor annealing is a simple random walk
through weight space with a gradually decreasing step
size. It is, in a sense, a variant of simulated annealing.
Both share an annealing schedule, and both utilize a
single point in space from which a neighbor is randomly
selected. However, they differ with respect to where their
annealing is applied. In simulated annealing, a neighbor
is chosen in a fixed manner, and then replaces the current
point if it is a better solution, or probabilistically if the
temperature is sufficiently high.

 Manuscript received November 30, 2007.

V. Scott Gordon is with the Computer Science Department at
California State University, Sacramento, CA 95819 USA (email:
gordonvs@ecs.csus.edu).

By contrast, neighbor annealing applies an annealing

schedule to the neighborhood size. At the early stages,
the neighborhood size is large enough to encompass the
entire problem domain. At each iteration, neighborhood
size is decreased, effectively limiting how far of a
random jump is allowed. Eventually, when the
neighborhood size reaches some predetermined
minimum value (varies depending on the range of
domain values), the search process stops. Also unlike
simulated annealing, a jump to a lower fitness is never
made. The basic steps are shown below in Algorithm 1:

ALGORITHM 1 – NEIGHBOR ANNEALING (BASIC)

1. select a random point P in domain(F).
2. repeat:
 (a) select a random neighbor R in S, where S is the
 set of points in domain(F) ∩ (P-T ... P+T).
 (b) if fitness(R) > fitness(P), replace P with R.
 (c) decrease T according to annealing schedule.

where:
F is the function being optimized,
P and R are points in domain(F),
fitness(x) is a measure of the quality of F(x), and the
vector T is neighborhood size expressed as temperature.

Like simulated annealing, the process reduces to a

sort of hill-climbing at the later stages.

A. Neighbor Annealing for Neural Networks

Neighbor annealing can be applied to a variety of
optimization tasks. This paper focuses on its application
for tuning neural network weights.

Adapting Algorithm 1 to training neural network
weights is straightforward. P and R represent floating-
point weight vectors. T is a floating point scalar,
initialized to a relatively large value for weight changes
(typically 1.0). Since the early random steps are large, it
is sufficient to initialize the weights in P to zero.
Fitness(x) is calculated by first assigning the values of
the weight vector (R) into a neural network, then running
a standard forward pass for the entire training set in
batch mode, and finally computing some measure of the
resulting success or failure, such as accumulating a sum-
squared error. A simple annealing schedule could be to
simply multiply T by a value close to (but less than) 1.0,

T

such as 0.9999. There is no backward pass. The entire
training process is shown below in Algorithm 2:

ALGORITHM 2 – NN TRAINING W/ NEIGHBOR ANNEALING

1. Initialize P to [0.0, 0.0, … 0.0]
 Initialize Sched < 1 (for example, Sched=0.9999)
 Initialize T to 1.0
 Initialize best_fitness = infinity
 Rand = uniform random.
 Training data consists of pairs of inputs I and
 associated desired outputs D.
2. repeat
 (a) initialize error to 0
 (b) R = P + [Rand(-T…T), rand(-T…T)…]
 (c) assign weight vector R to a neural network
 (d) for each training pair (Ix, Dx):
 (i) apply Ix to inputs
 (ii) calculate outputs Ox (forward pass)
 (iii) error += (Dx – Ox)2
 (e) if error < best_fitness, replace P with R
 (f) T = T * Sched
 until T < .0001

Upon completion, P contains the trained weights.

B. Flexibility of Neighbor Annealing

 Algorithm 2 (above) outlines a typical example of
neighbor annealing for neural network weight training.
But there is some flexibility for adapting training to the
goals of the network. There are many parameter options:

1) Annealing schedule

 Although our first experiments utilized a simple
multiplication annealing schedule, other schedules (such
as linear or Boltzmann) could of course be utilized.

2) Initial Step Size

While the value shown (1.0) seems to work for
many problems, for some problems larger values appear
to be effective, sometimes even as high as 20.0 or 30.0.
Similarly, the terminating criteria can sometimes be set
to occur sooner, such as at 0.1 or even 0.2.

3) Fitness computation and Error term

 The method shown above corresponds to that used
in backpropagation – namely, it computes the sum of the
squares of the output errors (desired minus actual).
However, there are times when it is useful to base the
fitness on other factors. For example, one could instead
count the number of training cases that were output
correctly. In another study, the author utilizes a self-
splitting network [3], and in that setting an appropriate

fitness measure would be to count the largest chunk of
contiguous solutions found. Unlike backpropagation,
neighbor annealing (like genetic algorithms and PSO)
does not require any gradient information – for that
matter, error information plays no role whatsoever in
assigning the next set of weights to be considered.
Therefore, any desired fitness measure can be used.

4) Artificial neurons

This study utilized networks built using standard
artificial neurons. That is, they compute a weighted sum,
and pass the sum through the standard logistic function.
Other units could be used instead, such as perceptrons,
because backpropagation’s reliance on a differentiable
squashing function does not apply to neighbor annealing.

III. EXPERIMENTAL METHOD

The shear simplicity of neighbor annealing for
neural network weight training is appealing, and the
pragmatic advantages outlined in 2.2 have been
described. However, for it to be practically useful it
would of course need to show promise in solving
problems competitively with other training methods.

For this first study, three weight training methods
were implemented and compared: (1) backpropagation,
(2) particle swarm optimization, and (3) neighbor
annealing. The settings of each are now described.

A. Backpropagation settings

Except where noted, we used the backpropagation
settings shown in Fig. 1:

• α (learning rate) = 0.3
• µ (momentum rate) = 0.8
• Training / test data normalized to (0.1…0.9)
• Threshold units (output=1) used at every layer

Fig. 1. backpropagation settings

B. Particle Swarm Optimization settings

Particle Swarm Optimization (PSO), introduced by
Kennedy and Eberhart [4], has gained attention lately as
an effective network training technique. PSO is based
loosely on the concept of the clustering of species, such
as the flocking of birds or the swarming of bees. This
study utilized the basic PSO formulae for the changes in
position and velocity shown in Fig. 2.
 PSO can be used to train a neural network by
assigning each particle to a separate neural network,
specifically by including in each particle a complete set
of weights for a possible neural network solution, where
each weight is a dimension of the particle. PSO neural

network training, like neighbor annealing, utilizes a
fitness function. As described earlier, for this study a
particle’s fitness is calculated by computing the output of
the network for every point in the training set, and
computing the sum of squares of the resulting errors.

∆Vi = wVi + c1 r1i(maxi - Pi) + c2 r2i(maxg - Pi)
Pi (new) = Pi (old) + Vi

where:
Vi = velocity vector for particle i
Pi = position vector for particle i
r1 r2 = uniform random vectors, in (0..1)
c1 c2 = guiding constants (set to 2.0 in this study)
w = inertial constant (set to 0.5 in this study)
maxi = best position of particle i, so far
maxg = best position of any particle, so far

Fig. 2. PSO Training Algorithm [4]

 PSO has a few other settings that must be chosen,
such as the maximum allowable values for position and
velocity, and the population size. These vary from
problem to problem, and are listed later.

C. Normalizing Performance Measures

For each test problem, an attempt is made to
compare the algorithms fairly, by normalizing the
amount of work they each do in order to reasonably
assess their relative efficiency and effectiveness. To this
end, a normalized interpretation of a work epoch is
utilized. An epoch is defined as a single set of passes
through the entire training data set. The following
adjustments are made to ensure that the three algorithms
are assessed for a roughly equivalent amount of work:

1) for neighbor annealing

Each batch pass to evaluate a weight vector is
considered a work epoch.

2) for backpropagation

Since processing is done for each training pair
separately, the total number of iterations is divided by
the training set size. Then, the result is multiplied by 2,
since there is an additional backward pass for each
training pair. The resulting value is the number of work
epochs.

3) for particle swarm

Since each pass is applied to a swarm of weight
vectors, the total number of iterations is multipled by the
swarm size. The result is the number of work epochs.

In addition, other steps are taken to ensure fair
comparison: (1) training methods are always compared
on equivalent network topologies, (2) criteria settings are
equivalent for each algorithm on any given problem, and
(3) the same training and testing data files are used for
each algorithm on any given problem.
 In some cases it was difficult to ensure that the exact
same number of epochs occurred in each algorithm. This
is because the annealing schedule as defined does not
incorporate a setting for the total number of iterations.
However, it was possible to adjust the annealing
parameters to result in reasonably similar values.

IV. TEST PROBLEMS

We used five problems of varying complexity,
including two relatively simple problems, one problem
of moderate difficulty, and two relatively hard problems.
Three of the problems were obtained from a variety of
sources, and the others were hand-constructed:

Problem Source # inputs /
outputs

training
cases

testing
cases

XOR n/a 2 - 1 4 -

 BEAM [5] 4 - 1 10 6

XOR regions n/a 2 - 1 100 16

Snowplow [6] 5 - 1 1024 -

2-Spiral [8] 2 - 1 1058 1056

Fig. 3. Test Problem Details

The XOR problem is a simple truth table, but the

outputs are in floating point space. The XOR regions
problem extends the XOR problem to four quadrants of
floating-point input/output in 2d space. The BEAM
problem was taken from Adeli and Hung [5]. The
Snowplow Driving problem was generated for the Olsen-
Darter study [6] using a complex set of nonlinear
computations described by Gabibulayev et. al [7], and
consists of training data only. The Two-Spiral problem
was generated using CMU’s benchmark data set
generation software [8].

For each test problem, we chose training criteria
(permissible errors for outputs during training), testing
criteria (permissible errors for outputs during testing),
and network topology (number of nodes in each network
layer, not including threshold units). The values we
chose are shown below, in Fig. 4.

Descriptions of each problem are shown in Fig. 5.
They are each taken (or paraphrased) from descriptions
given in their source material, if any.

Problem Topology Training
Criteria

Testing
Criteria

other
settings

XOR 2-2-1 0.4 -

Sched = 0.999
initial temp = 1.0
Swarm size = 20
pMin/Max = +/-5

BEAM 4-4-1 0.02 0.04

Sched = 0.999
initial temp = 1.0
Swarm size = 10
pMin/Max=+/-5

XOR
regions 2-4-1 0.3 0.3

Sched = 0.99999
initial temp = 0.5
Swarm size = 50
pMin/Max=+/-50
µ = 0

Snow
Plow 5-5-1 2.0 -

Sched = 0.9999
initial temp = 1.0
Swarm size = 20
pMin/Max=+/-20

2-Spiral 2-5-1 0.4 0.4

Sched=0.9999
initial temp = 0.5
Swarm size = 20
pMin/Max=+/-50
µ = 0.8

Fig. 4. Test Problem Details

XOR – Trains the network to correctly compute the

exclusive-OR of its two inputs.

BEAM – Trains the network to compute the
minimum weight steel beam for a given loading
condition [5].

XOR regions – Trains the network to learn:
 F(x,y) =
 0 when x in [0..1] and y in [0..1],
 1 when x in (1..2] and y in [0..1],
 1 when x in [0..1] and y in (1..2],
 0 when x in (1..2] and y in (1..2]

Snowplow Driving – Trains the network to predict
the location of a vehicle 3 seconds into the future,
given a set of sensor values [6].

Two Spirals – Trains the network to distinguish on
which of two intertwined spirals a point lays [8].

Fig. 5. Test Problem Descriptions

V. RESULTS

All of the neural networks were able to successfully
learn the training sets of XOR, XOR regions, and BEAM.
Those results are shown in Fig. 6, which compares how
quickly each algorithm was able to learn the training
data, and also how well each generalized on the test data.

None of the algorithms were able to completely
learn either the Snowplow or the 2-Spiral problems.
Those results are shown in Fig. 7, which compares to
what degree each algorithm was able to solve each
problem, for roughly equivalent numbers of epochs.

In each table, generalization is the percentage of
(untrained) testing cases that produced outputs within the
testing criteria, after training was complete.

Problem

Backprop
• Train epochs
• Residual error
• Generalization

PSO
• Train epochs
• Residual error
• Generalization

Neighbor
Annealing

• Training epochs
• Residual error
• Generalization

XOR
484
0.43

720
0.26

299
0.33

BEAM
2630
0.005
83%

580
.005
66%

788
.035
100%

XOR
regions

358,756
1.95
100%

250,000
1.4
100%

318,983
1.87
100%

Fig. 6. Results - 1

Problem

Backprop
• Train epochs
• Residual Error
• % Trained
• Generalization

PSO
• Train epochs
• Residual Error
• % Trained
• Generalization

Neighbor
Annealing

• Training epochs
• Residual Error
• % Trained
• Generalization

Snow
Plow

97,656
0.28
96%

100,000
.85
84%

92,099
0.50
90%

Two
Spiral

189,035
201.8
6%
6%

100,000
200.0
26%
26%

85,000
202.0
27%
27%

Fig. 7. Results - 2

First results for neighbor annealing on this test suite
look very promising. It is certainly competitive, actually
outperforming both backpropagation and PSO in most
cases. Generalization is as good or better than
backpropagation and PSO in every case. In one problem
(XOR regions), PSO displays the fastest learning.

Some additional ad-hoc experimenting was done
using neighbor annealing, substituting number of cases
solved for the fitness function (instead of sum-squared
error). This produced interesting results on the harder
functions, shown below in Fig. 8. In these examples, the
network topology was expanded to 2 hidden layers.

Problem

Neighbor Annealing
2-4-4-1

• Training epochs
• % Trained

XOR
regions

 5000 103,287
 84% 100%

Snow
Plow

 1000
 34%

2 Spiral 1000 10,000
 56% 61%

Fig. 8. Additional Results

 The solution for XOR regions is notably better with
these settings, even better than the previous PSO results.
And, while the 2-spiral problem is still far from being
solved, a much larger portion of it has been trained. In all
three cases, significant chunks of the problem have been
solved very quickly. Although this is of marginal interest
in isoloation, it could be very useful if a divide-and-
conquer strategy were being employed [3].

VI. CONCLUSIONS

A simple optimization technique called neighbor
annealing was described, and then shown to be
applicable to neural network weight training. Its
characteristics were outlined, and shown to have benefits
in terms of flexibility and adaptability to a variety of
neural network settings. Its performance was compared
against backpropagation and particle swarm optimization
on a suite of five problems, and it was shown to be
competitive with those existing methods on the suite.

Neighbor Annealing is so simple that it could be
characterized as trivial, or even primitive. That it should
work rather well without tuning or modification, leads us
to believe that it merits further study.

VII. FUTURE WORK

Further experiments are needed on a wider variety of
difficult training sets. Also, more testing is needed using
alternative fitness measures and annealing schedules. It
would also be natural to consider more sophisticated
methods for adjusting the neighborhood size, such as that
used in the variable step size GSA (VSGSA) developed
by Sutter and Kalivas [2].

We have begun a study combining the neighbor
annealing presented here with the self-splitting network
described in [3]. The flexibility of neighbor annealing,
specifically for encouraging the identification of solved
chunks, seems well-suited for this framework.

REFERENCES

[1] S. Haykin, Neural Networks, a Comprehensive Foundation.
Prentice-Hall 1994.

[2] J. M. Sutter and J. H. Kalivas, Convergence of generalized
simulated annealing with Variable Step Size with Application
Toward Parameter Estimations of Linear and Nonlinear Models,
Analytical Chemistry, 63 (1991) 2383-2386.

[3] V. Gordon and J. Crouson, Self-Splitting Modular Network –
Domain Partitioning at Boundaries of Trained Regions, to appear
in the International Joint Conference on Neural Networks –
IJCNN 2008.

[4] J. Kennedy and R. Eberhart, Swarm Intelligence. Morgan-
Kaufmann 2001.

[5] H. Adeli and S. Hung, Machine Learning – Neural Networks,
Genetic Algorithms, and Fuzzy Systems, John Wiley & Sons,
1995

[6] M. Olsen-Darter and V. Gordon, Vehicle Steering Control Using
Modular Neural Networks, IEEE International Conference on
Information Reuse and Integration (IRI), pp 374-379, 2005.

[7] M. Gabibulayev, B. Ravani, and T. Lasky, Stochastic Modeling
for Lateral Control in Snowplow Operations, 9th World Congress
on Intelligent Transport Systems, Chicago, IL, October 2002.

[8] M. White, Two-Spirals Benchmark Data Set Generator, 26 April
2006:http://www.cs.cmu.edu/afs/cs/project/ai-
repository/ai/areas/neural/bench/cmu/bench.tgz

