
Evolving Sparse Direction Maps 
for Maze Pathfinding 

 
 V. Scott Gordon Zach Matley 
 California State University, Sacramento Digital Eclipse Software, Inc. 
 6000 J st., Sacramento, CA 95819 210 - 1965 West 4th Ave., Vancouver, BC V6J 1M8 
 Email: gordonvs@ecs.csus.edu Email: zachm@digitaleclipse.com 

Abstract- A genetic algorithm is used to solve a class of 
maze pathfinding problems. In particular, we find a complete 
set of paths directing an agent from any position in the maze 
towards a single goal. To this end, we define a sparse direction 
map, wherein the maze is divided into sectors, each of which 
contains a direction indicator. Maps are evolved using a 
simple genetic algorithm. The fitness function samples the 
efficacy of the map from random starting points, thus 
estimating the likelihood that agents will find the goal. The 
framework was effective in evolving successful maps for three 
different mazes of varying size and complexity, resulting in 
interesting and lifelike agent behavior suitable for games, but 
not always the shortest paths. 

I. BACKGROUND 

Finding a path through a maze is a basic computer 
science problem that can take many forms. In this paper, 
we consider the case where a maze has a single goal 
location, and an agent must find a path to that goal from 
any arbitrary point. We start with a maze and a goal, and 
seek a solution which allows us to drop agents into 
random locations and have them quickly find the goal. 

One approach to solving this problem would be to have 
each agent independently find a path from its current point 
to the goal, at the time that the agent is dropped, using any 
of a number of classical search techniques. Depending on 
processor speed, the resulting delay incurred when an 
agent is dropped might not be acceptable. 

Another method would be to create a complete direction 
map for the goal. A direction map is a table of arrows 
identical to the maze, indicating a direction to move for 
each location on the grid. When an agent is dropped, it 
need only refer to the direction map to indicate which 
direction to move. A simple method for filling the 
direction map, based on Dijkstra’s algorithm [1] is: 

Algorithm 1 

• set global counter to 0. 
• set goal location in map to 0. 
• set other map locations to empty. 
• for each location with map number = counter 

 for each adjacent empty location L 
 place counter+1 in L 

• increment counter 
• repeat until no empty locations 

Once the map is filled, an agent then moves simply by 
selecting an adjacent location which has a lower map 
number than that of its current location. An advantage of 
this method is that it only needs to be performed once, 
when the map is created. 

A drawback to building a complete direction map is its 
size. Each instance of the map must contain a value for 
every location on the maze. This could consume more 
resources than necessary, depending on the type of 
platform and the number of copies of the map needed. 

 
II.  SPARSE DIRECTION MAPS 

Whereas a complete direction map contains an indicator 
corresponding to every location on a maze, a sparse 
direction map includes a single indicator for a block of 
locations. The maze is divided into equal-sized rectangular 
sectors, each of which contains a direction. The eight 
possible directions are in increments of 45 degrees.  
Figure 1 shows a 15x15 direction map for a simple 24x24 
maze. Agents move in the direction specified by the map 
entry in which their actual maze location resides. 

 
 

 
 
Figure 1. 15x15 sparse direction map for a simple 24x24 maze  
 
Filling a sparse direction map using Algorithm 1 can 

lead to problems. Each sector contains multiple starting 
points, and in some cases a portion of the maze walls 
might cut across a sector, making it difficult to determine 
a single direction for the sector. 



For example, consider the 9x9 maze shown in Figure 2. 
If the superimposed 3x3 sparse direction map is used, 
what single direction should be placed in the center 
sector? Although an upward arrow would be the optimal 
path for squares to the right of the barrier, it would lead to 
unrecoverable pitfall for agents dropped inside the arc of 
the barrier. Algorithm 1 is not guaranteed to produce a 
suitable direction for the center sector in this example. 

 

 
 

Figure 2. 9x9 complete direction map, showing 3x3 sparse sectors 
 

Note that a sparse map represents a coarse-grained 
solution to a fine-grained problem, and that therefore the 
solutions found may not be optimal. For example, in 
Figure 2, although a downward arrow is the only feasible 
choice for the center square, it still results in a less-than-
perfect map, because the cells immediately below the goal 
would also be set in the downward direction. The final 
solution would necessarily need to incorporate this 
compromise. Depending on the application, finding the 
very shortest path may not necessarily be important. In 
fact, indirect paths may be interesting in the context of 
games if they help facilitate lifelike behavior. 

 

III. GENETIC ALGORITHM SOLUTION 

Genetic Algorithms have been used previously for 
solving mazes. Previous approaches have focused on 
finding a solution between two points [2]. In contrast, our 
objective is to derive maps that direct agents from any 
starting point to a single goal. We populate our sparse 
direction maps using a Simple Genetic Algorithm (SGA) 
[3]. Genetic algorithms are search techniques based 
loosely on the concept of genetic evolution, where 
selection, crossover, and mutation are applied to a 
population of candidate solutions in order to evolve good 
solutions. Applying a genetic algorithm here requires an 
encoding and a fitness function specific to the maze 
problem. We also describe the genetic operators and 
parameters we used. 

A. Encoding 
Recall that a sparse direction map is a two-dimensional 

array of arrows, one per sector. Since there are eight 
possible directions, three bits can be used to represent 
them. Figure 3 shows the bit codes for each arrow. In a 
15x15 direction map there are 275 directions of 3 bits each 
for a total of 675 bits per direction map. Thus a complete 
map can be encoded by concatenating all 275 3-bit sectors 
into a single 675-bit string. A population consists of 
several such strings, each representing a candidate 
direction map solution to a given maze. At the beginning, 
these bit strings are generated randomly, and the number 
of bit strings in the population remains constant. 

 

 
Figure 3.  three-bit encoding for each map sector 

 
This encoding has other applications. For example, it 

can be used to apply the genetic algorithm to the Knight's 
Tour problem [4]. Since the encoding is binary, standard 
SGA crossover and mutation operators can be used. 

B.  Fitness Measurement 

The fitness measurement (or, fitness function) estimates 
how effective each candidate solution (string) is when 
used as a sparse map for a given maze. We wanted a 
fitness function that relied only on the success or failure 
rates of agents utilizing the map, and did not require any 
additional heuristic information or local searching. 

The process we used for evaluating the fitness of 
direction maps is: 

Algorithm 2 - fitness function 
1) Launch a fixed number of agents from random 

positions in the maze, 
2) Allow the agents to move according to their 

programmed behavior (which includes reading the 
candidate direction map) for a set number of steps, 

3) The fitness measurement is the number of agents 
that reach the goal. 

 
Fitness values therefore range from 0 to the number of 

agents launched. Note an advantage of algorithm 2 is that 
it requires no notion of distance to the goal. Choosing an 
appropriate number of agents to launch requires finding a 
balance between evolution time and accuracy -- running a 
large number of agents takes a long time. However, a 



small number of agents randomly distributed across the 
maze may provide a poor sample of all the possible 
starting points, producing less accurate estimates. 

Since the fitness of a direction map is the number of 
agents that find the goal, it does not matter how each agent 
finds the goal. The genetic algorithm does not distinguish 
between short or long paths, and, as mentioned before, 
sometimes unexpected paths through the maze are 
generated. Also, the random factor of the fitness 
measurement means that repeated measurements on the 
same direction map will often yield different fitness 
values. This is because the starting points of the agents are 
randomly generated each time a map is evaluated. 

C.  Genetic Operators 

We encoded three mazes: the small one shown 
previously in Figure 2, and two large ones described later 
in Section 5. The genetic operators we used varied slightly 
depending on which maze was being solved: 
 
� Selection: 3-to-2 tournament. 3 strings selected at 

random, and the best 2 are selected. 

� Crossover: standard 2-point with probability 100% 

� Population Size: 200 for the small maze, and 100 for 
the other two cases. 

� Mutation Rate: 0.5% 

� Agents used for fitness evaluation: 250 for the small 
maze, 100 for the other two cases. 

� Maximum number of steps per agent: 50 
 

We also used a form of elitism at each generation. In an 
elitist genetic algorithm, the best fitness increases 
monotonically with each generation, typically achieved by 
ensuring that the individual with the highest fitness always 
survives to the next generation. Something similar was 
implemented for this project: once the fitness of each map 
is evaluated, a backup is made of the one with the highest 
measurement, which is then later copied into the next 
generation. This is similar to elitism, but since the fitness 
measurement is not constant, there is no guarantee that the 
best fitness in a population always increases. 

A direction map is considered successful when all of 
the agents find the goal during fitness measurement. 
However, even when a map is successful, it is still 
possible that there are areas of the maze which were not 
tested, and from where agents would not reach the goal.  
For that reason, the problem is not considered solved until 
maps are found for which all the agents reach the goal in 3 
successive generations. 

IV. AGENT 

Agents, shown in Figure 4, are the characters which 
travel through the maze. Their responsibility is to move 
according to the directions stored in the map, avoid 

running into walls and recognize when they find the goal. 
In this project, agents travel the distance of a maze grid 
unit at each move. They can move in sixteen directions, 
even though the map only indicates eight. Utilizing 
sixteen directions helps in avoiding walls, and in making 
the agents' movement appear more lifelike by including a 
small amount of wandering. 

 

 
 

Figure 4.  an agent 
 

An agent usually moves in the map direction 
corresponding to its position in the maze. However, it 
must recognize when doing so would cause it to collide 
with a wall. When this happens, it alternately tries moving 
d + a and d – a degrees, where d is the direction from the 
map, and a starts at 0 degrees, and increases in increments 
of 22.5 degrees, until a safe direction is found. 

Wandering involves augmenting the direction from the 
map by either 0, ±22.5, or ±45 degrees. The probability of 
wandering is adjustable - we used 20% for the large mazes 
and none for the small maze. Giving the agent the ability 
to wander helps make the agents' movement appear more 
lifelike, and may help speed up finding a solution. 

V. RESULTS 

Figures 5, 6, and 7 show the direction maps evolved for 
a small maze (shown previously in Figure 2), a simple 
maze, and a complex maze. Solving the mazes required 
28, 148, and 1220 generations respectively. 
 

 
 

Figure 5.  evolved direction map for the small maze 
(28 generations) 

 
The maps as evolved, when used in conjunction with 

agent behavior as described in Section 4, produce 
successful yet lifelike maze traversal from every start 
point of each maze. Close examination of the sparse maps 
reveal that, in many cases, the paths to the goal are not 
always optimal. For example, in the small map (Figure 5), 
most paths lead around the barrier even when there is a 
more direct path. Further, at times the maps appear to lead 



the agent into a wall. Of course, the maps were evolved in 
the context of agent wandering and wall-avoidance, thus 
such directions can be acceptable. 

 
 

 
 

Figure 6. evolved sparse direction map for a simple maze 
(148 generations) 

 

 
Figure 7. evolved sparse direction map for a complex maze 

(1220 generations) 

VI. CONCLUSION 

Previous genetic algorithm approaches to finding paths 
through a maze have focused on finding an optimal 
solution between two points. The objective of this project 
was to evolve data that would allow agents to quickly 
travel from any starting point to a single goal. Finding the 
shortest path length was not essential - successful but 
lifelike behavior was desired. 

A data structure called a sparse direction map was 
proposed, which contains directions used to guide agents 
from any position to the goal. Maps were evolved using a 
variant of an elitist Simple Genetic Algorithm, 
incorporating a simple binary encoding and a fitness 
function that estimates the likelihood that agents will find 
the goal. This framework was able to evolve successful 
maps for three different mazes of varying size and 
complexity. The resulting maps led to interesting and 
lifelike agent behavior suitable for games, but not always 
the shortest paths. The Simple Genetic Algorithm proved 
to be an effective solution to our maze problem. 

VII. FUTURE WORK 

Although the SGA is popular for its simplicity and 
because it is well-understood, it is also known to be 
among the least effective as an optimizer [5]. Here too, 
while the SGA was able to find sparse direction maps for 
all of our test cases, evolution was rather slow. The 
complex maze required over 3 hours to solve on a Pentium 
3. The experiments should be repeated with more effective 
genetic algorithms, such as Genitor, or one of the parallel 
models (Island, CGA, etc.). 

The GA could be encouraged to find shorter paths by 
incorporating the total distance traversed by the agents 
into the fitness evaluation. 

Further study needs to be done to determine how many 
agents should be used during fitness evaluation. A small 
number is faster and allows more maps to be considered, 
but a large number of agents results in more accurate 
fitness measurement. Perhaps utilizing a variable number 
of agents could balance the advantages of both. 

Finally, direction maps could be extended to allow 
agents to chase a moving target. An often-touted 
advantage of genetic algorithms is that if a solution has 
been found, and the problem changes slightly, the 
algorithm can quickly adjust. Dynamic direction maps 
might then be an ideal case for utilizing the adaptive 
nature of genetic algorithms. 

 
REFERENCES 

 
[1] Dijkstra, E., “A Note on Two Problems in Connexion with 

Graphs,” Numerische Mathematik 1, pp. 269-271 (1959) 
 
[2] Berg, A., “Genetic Algorithm – Maze Solver,” (2003) 

http://www.sambee.co.th/MazeSolver/mazega.htm, 1996 
 
[3] Goldberg, D., Genetic Algorithms in Search, Optimization 

and Machine Learning. Addison-Wesley, 1975 
 
[4] Gordon, V. and Slocum, T., “The Knight's Tour - 

Evolutionary vs. Depth-First Search,” 2004 Congress on 
Evolutionary Computation, Portland, Oregon. 

 
[5] Gordon, V., Whitley, D., and Böhm, W., “Serial and 

Parallel Genetic Algorithms as Function Optimizers,” 5th 
International Conference on Genetic Algorithms, Urbana-
Champaign, Illinois, pp. 229-235, 1993 


