
A Note on the Performance of Genetic Algorithms on Zero-One Knapsack Problems

V. Scott Gordon, A. P. Wim Böhm, and Darrell Whitley
Department of Computer Science, Colorado State University

Keywords: zero-one knapsack, dataflow computing, performance
comparisons of genetic algorithms vs. traditional search methods.

Introduction

For small zero-one knapsack problems, simple branch-and-bound
and depth-first methods generate solutions much faster than our
genetic algorithms. For large problems, branch-and-bound and
depth-first methods outperform the genetic algorithms both for find-
ing optimal solutions and for finding approximate solutions quickly.
The simple methods perform much better than genetic algorithms
on this class of problem in spite of the existence of a genetic en-
coding scheme which exploits useful local information. The results
highlight the need for a better understanding of which problems are
suitable for genetic algorithms and which problems are not.

Zero-One Knapsack Problems

The zero-one knapsack problem is defined as follows. Given �
objects with positive weights

���
and positive profits � � , and a

knapsackcapacity � , determine a subsetof the objects, represented
by a bit vector � , such that:

��
�
	

1

� ������ � � ���
��
��	

1

� � � ��� ����� � ���

A greedy estimate is found by inserting objects by profit weight
ratio until the knapsack cannot be filled any further. Problems with
poor greedy estimates tend to be harder to solve.

Random zero-one knapsack problems were generated based on
five parameters: number of objects (�), knapsack capacity (�) as
a percentage of total weight of the objects, minimum weight and
profit of any object (�), range of weight and profit of any object
(�) such that ����� represents the maximum weight (profit) of an
object, and a random seed (). We always use �"! 80%, and try to
adjust � and � to create a small variance in profit/weight ratio. This
seems to generate knapsack problems with poor greedy estimates.

The test cases include a 20-object problem, an 80-object prob-
lem, and several 500 and 1000-object problems. The 20-object
problem was built by generating a random 15-object problem (as
described above) and adding 5 more objects in such a way as to
generate a poor greedy estimate. This problem was used previously
in experiments by Böhm and Egan [1]. The 80-object problem was
built entirely by using the random method described earlier.

Genetic Encoding

A simple genetic encoding scheme for zero-one knapsackproblems
is as follows. Let each bit represent the inclusion or exclusion of
one of the � objects from the knapsack, by profit/weight ratio from
left to right. Note that it is possible to represent infeasible solutions

by setting so many bits to “1" that the weight of the corresponding
set of objects overflows the capacity of the knapsack.

We consider two ways of handling overflow. The first penalty
method assigns a penalty equal to the amount of overflow. The
second method, partial scan, adds items to the knapsack one at a
time, scanningthe bitstring left to right, stopping when the knapsack
overflows. Then, the last item that was added is removed.

Since the objects are ordered by profit weight ratio, the greedy
estimate appears as a series of “1" bits followed by a series of “0"
bits. The partial scan method has the interesting property that a
string of all “1" bits evaluates to the greedy estimate. This provides
an easy way of seeding the greedy estimate into the population.

Our 20-object problem has a global optimum of 445 and a greedy
estimate of 275. The 80-object problem has a global optimum of
25729 and a closer greedy estimate of 25713. Using our genetic
algorithms, the 20-object knapsack problem is harder to solve than
the 80-object knapsack problem. Further, the penalty evaluation
method works better on the 20-object problem, and the partial scan
method works better on the 80-object problem [4].

Exact Methods

Bohm and Egan [1] describe five algorithms for solving zero-one
knapsack problems: divide and conquer, dynamic programming,
depth first with bound, memo functions, and branch and bound.
We consider only depth-first and branch-and-boundsince they were
reportedly the most effective.

Points in the search space represent partial solutions. A lower
bound for the best total solution from this point is computed by
adding objects with decreasing profit/weight ratio until an object
exceeds the knapsack capacity. An upper bound is computed by
adding part of the object that exceeded the knapsack capacity, such
that the knapsack is filled to capacity. The depth first with bound
algorithm starts out with the greedy estimate. At a certain point in
the search, the upper bound is used to determine whether the subtree
under this point needs to be searched further. The branch and bound
algorithm searches the state space breadth first. Sub-trees are cut
by calculating the upperbound of a partial solution and comparing
it to a shared variable containing the current best lower bound.

We compare performance by executing the depth-first, branch-
and-bound, and the genetic algorithm on a simulator of the Manch-
ester Dataflow Machine [5], which provides statistics such as total
instructions executed, critical path, and average parallelism.

Comparative Results – Small Knapsack Problems

Gordon and Whitley [4] reported results for knapsack problems
using several genetic algorithm implementations, including a Sim-
ple Genetic Algorithm, Genitor, a simplified CHC, several Island
Models, and a Fine Grain Cellular Genetic Algorithm. Although
Genitor performed the best overall, additional experiments using
smaller population sizes determined that the optimal performance
of any of the genetic algorithms on the 80-object knapsack prob-
lem was obtained by using the cellular genetic algorithm (CGA).
With a population size of 25, and the partial scan encoding method,
CGA requires 26 generations (averaged over 30 runs) to solve the
80-object knapsack. The results reported here are therefore based
on the cellular algorithm, since they represent the lowest total in-
structions executed and critical path for our genetic algorithms.

Although it is too slow in practice to run the genetic algorithm to
optimality on the 80-object knapsackwithin the dataflow simulator,
it is possible to estimate the total number of instructions required for
such execution as follows. First, the number of instructions required
for a single generation is estimated by running the algorithm for
2 and 3 generations, then finding the difference of the reported
number of instructions � for each run. The number of instructions��# for a single generation is approximately � 3 $ �

2 . It follows
that the number of instructions � � for the initialization phase is
approximately � 2 $ 2 � # . The total number of instructions �&% then
for a complete run of ' generations is � � �(' ��# . Similarly, the
critical path)*� % can be estimated using critical paths)*� 2 and)*� 3

reported for runs of 2 and 3 generations.
For CGA with population size 25, the dataflow simulator reports�

2 ! 713174, � 3 ! 991405,)*� 2 ! 32871, and)*� 3 ! 34520.
Estimates for � % and)*� % are shown in Table 1, along with corre-
sponding values for depth-first and branch-and-bound (as reported
by the simulator).

Algorithm Total Inst Crit Path
Massively Parallel GA 7390718 42874
Depth-First Search 1142637 355711
Branch-and-Bound 128636 16582

Table 1: GA vs. other methods on 80-object knapsack

Both depth-first and branch-and-bound find solutions faster
(fewer total instructions) than the genetic algorithm. The short
critical path for branch-and-bound indicates that this algorithm also
has greater potential parallelism than the genetic algorithm. Over-
all, depth-first is about six times faster than the genetic algorithm,
and branch-and-bound is about sixty times faster.

Large Knapsack Problems

Since knapsack problems define a search space of 2
�

combinations
of objects, exhaustive search methods will eventually fail on very
large problems. While this is likely also true for genetic algorithms,
perhaps the genetic algorithm can provide better solution estimates
part way through the search than standard methods. On the other
hand, for larger problems the greedy estimate is often close to
the global optimum, which helps simple exact methods prune the
search space more effectively. We found it necessary to generate
thirty knapsack problems of 500 and 1000 objects in order to find
four that the exact methods did not solve within one second.

“Best-so-far" values for each algorithm at various times dur-
ing the search are compared in Table 2. Several population sizes
for the genetic algorithm are tested. On 500-object problems, the
genetic algorithm requires 3 minutes just to reach the greedy esti-
mate. On 1000-object problems the genetic algorithm requires 20
minutes to reach the greedy estimate. Branch-and-bound performs
significantly faster than either algorithm, but space demands cause
it to fail on one of the problems. Depth-first also clearly beats the
genetic algorithm, since the genetic algorithm never reaches the
estimate which the depth-first algorithm finds after 10 seconds. It is
interesting to note that on problem '+ 1000

2 , the depth-first algorithm
finds the global optimum after only 10 seconds, but requires 25
more minutes to know that it is the optimum. The genetic algorithm
takes this long just to find the greedy estimate.

The genetic algorithm results can be improved slightly by seed-
ing the population with a copy of the greedy estimate. As stated
earlier, this is easily done by setting all of the bits in one of the
strings to “1". Tests determined that doing this does not change the
comparison with depth-first with regards to solving the problems
to optimality, or obtaining better estimates. For the longer time
periods, the estimates produced by the genetic algorithm were close
to those shown in Table 2.

', 500
1 ', 500

2 ', 1000
1 ', 1000

2
Global Optimum 55,928 56,448 336,983 630,972
Greedy Estimate 55,907 56,366 336,699 630,397
Depth-first
time-to-solve 1 hr - 3 hrs - 3 hrs 25 min
estimate @10 sec 55,927 56,446 336,982 630,972

Branch-bound
time-to-solve 1 sec 7 sec 24 sec never .
estimate @10 sec solved solved —– —–

GA, popsize ! 25
time-to-solve / / / /
estimate @90 sec 55,879 56,349 334,963 626,398

GA, popsize ! 100
time-to-solve / / / /
estimate @90 sec 55,820 56,315 329,672 616,064
estimate @180 sec 55,912 56,419 336,583 630,154

GA, popsize ! 400
time-to-solve / / / /
estimate @20 min 55,924 56,437 336,852 630,594

(*) Branch-and-bound exceeds memory for the ', 1000
2 problem.

Table 2: GA vs. other search methods on large knapsack problems.

Conclusions

These findings strengthen the notion that genetic algorithms are
general-purpose algorithms not intended to supplant existing meth-
ods for solving all problems. The algorithms used here are also
rather simple general purpose search algorithms. Martello and Toth
report solving much larger knapsack problems than ours in under
one minute using more specialized forms of branch and bound [6].
It seems reasonable to infer that pure genetic search could not match
this kind of performance since the cost of evaluating a population
large enough to adequately sample such a huge space would be
excessive. Gendreau et al are producing similarly superior results
(over genetic algorithms) on traveling salesman problems [2].

Application domains such as the zero-one knapsack may not be
well-suited to blind genetic search, and genetic approaches to such
problems may instead require a hybrid approach. We clearly need a
better understanding of which problems cannot be solved practically
by exact methods, and which may lend themselves instead to genetic
or hybrid approaches.

References

[1] A. Böhm and G. Egan. Five Ways to Fill Your Knapsack.
Colorado State University technical report CS-92-127, 1992.

[2] M. Gendreau, A. Hertz, and G. LaPorte. New Insertion and
Postoptimization Procedures for the Traveling Salesman Prob-
lem. Operations Research, Vol 40 #6, Nov-Dec 1992.

[3] V. Gordon, D. Whitley, and A. Böhm. Dataflow Parallelism in
Genetic Algorithms. PPSN2, North Holland, 1992

[4] V. Gordon, D. Whitley. Serial and Parallel Genetic Algorithms
as Function Optimizers. Proceedings of the 5th ICGA, Morgan
Kaufmann, 1993

[5] J. Gurd, C. Kirkham, and W. Böhm. The Manchester Dataflow
Computing System. in J. Dongarra, Exper. Parallel Comp. Arch,
Special Topics in Supercomputing 1, North Holland, 1987

[6] S. Martello and P. Toth. Knapsack Problems: Algorithms and
Computer Implementations, J. Wiley and Sons, c

0
1990

