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ABSTRACT

The Terrain-Based Memetic Algorithm (TBMA) is a diffu-
sion MA in which the local search (LS) behavior depends on
the topological distribution of memetic material over a grid
(terrain). In TBMA, the spreading of meme values – such as
LS step sizes – emulates cultural differences which often arise
in sparse populations. In this paper, adaptive capabilities
of TBMAs are investigated by meme diffusion: individuals
are allowed to move in the terrain and/or to affect their en-
vironment, by either following more effective memes or by
transmitting successful meme values to nearby cells. In this
regard, four TBMA versions are proposed and evaluated on
three image vector quantizer design instances. The TBMAs
are compared with K-Means and a Cellular MA. The re-
sults strongly indicate that utilizing dynamically adaptive
meme evolution produces the best solutions using fewer fit-
ness evaluations for this application.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms

Algorithms, Experimentation

Keywords

Memetic algorithms, adaptation, terrain-based models

1. INTRODUCTION
Adaptation in natural systems often requires a complex

trade-off between genetic inheritance and individual learn-
ing. Bird flight and human walking are two examples of
essential activities which require both adapted body struc-
tures (e.g., wings, legs) and training. A newborn’s learning
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is usually performed through imitation, whereas biological
adaptation is handled by natural selection and gene inheri-
tance [31]. Therefore, complex human behaviors (e.g., com-
munications) are expected to be influenced by both genetic
and cultural evolution. The universal applicability of evo-
lution to non-genetic systems was suggested by Dawkins,
who has also introduced the concept of meme as a unit of
cultural evolution in [7]. According to Dawkins, memes com-
pete with their alleles for resources (i.e., time and space) in
the “survival machines” (i.e., human brains).

In Evolutionary Computation, the term Memetic Algo-
rithm (MA) was coined by Moscato [26] for designating
population-based optimization heuristics inspired by both
Darwinian evolution and Dawkins’ meme concepts. Such
algorithms make use of hybridization techniques for mix-
ing Evolutionary Algorithms (EAs) with local improvements
(e.g., hill climbing) [26]. It has been shown that MAs gen-
erally perform better than when either EAs or local search
(LS) are used standalone [25, 27, 11].

While most works in MAs consider static local operations,
MAs can benefit from the adaptation of LS [29]. In this re-
gard, diffusion may play a central role in MAs. Nguyen et
al. state that “there exists a plethora of non-genetic trans-
fers, which may include migration, diffusion, direct teaching
and many others.” [28]. Besides, Gen and Cheng [12] point
out that there is a key difference between genes and memes:
memes are typically processed and adapted before being dif-
fused from one individual to another, whereas genes are fully
inherited from parents.

The present paper is concerned with adaptation in MAs by
meme diffusion. We propose four spatially distributed MAs,
three of which may be considered adaptive MAs. A corre-
spondence between meme and physical location is proposed,
modeling cultural differences which may arise from sparse
territories. All models are derived from the Terrain-Based
Genetic Algorithm (TBGA) proposed by Gordon et al. [14],
which made simultaneous usage of different parameter com-
binations such as mutation rates and number of crossover
points for evolving individuals in a structured population.
The proposed MAs integrate an accelerated version of K-
Means – whose behavior depends on a scale factor parameter
(η) – and are evaluated on vector quantizer design applica-
tion for image coding. The proposed methods are compared
with K-Means and with a Cellular MA.

The paper is organized as follows: Section 2 introduces
vector quantization, the K-Means algorithm and its accel-
erated version. Section 3 provides background on adaptive
EAs and MAs, and spatially distributed population EAs.
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Section 4 presents the proposed MAs. Section 5 describes
the experimental methodology and settings used. Finally,
Sections 6 and 7 present results and conclusion, respectively.

2. VECTOR QUANTIZATION
Vector Quantization [13] (VQ) has been established as an

effective source coding technique that plays an important
role in many signal compression systems, e.g. [35, 32]. Shan-
non’s rate-distortion theory [5] establishes the superiority of
VQ over scalar quantization. VQ is also used in other ap-
plications, such as speaker identification [17], steganography
and digital watermarking [23, 6].

An N-level vector quantizer of dimension K can be defined
as a mapping Q from a vector ~x in K-dimensional Euclidean
space, R

K , into a a finite subset W of R
K containing N

distinct reproduction vectors. Thus,

Q : R
K →W, (1)

where the codebook W = {~wi}|
N
i=1 is the set of K-dimensional

codevectors (reconstruction vectors).
The code rate of the quantizer, which measures the num-

ber of bits per vector component, is R = 1

K
log2 N . In image

coding, R is expressed in bits per pixel (bpp).
The mapping Q leads to a partition of R

K into N regions
Si, i = 1, 2, . . . , N , for which

N
⋃

i=1

Si = R
K and Si ∩ Sj = ∅ if i 6= j, (2)

where each cell Si is defined as

Si = {~x : Q(~x) = ~wi}. (3)

Codebook design plays a crucial role in the scenario of
signal compression systems based on vector quantization.
The most widely used technique for designing VQ codebooks
is the K-Means algorithm [24].

2.1 The K-Means Algorithm
Let the iteration of K-Means be denoted by n. Given K,

N and a distortion threshold ε > 0, the K-Means algorithm
[24] consists of the following steps:

• Step 1: Given an initial codebook W0 and a training
set X = {~xm}|

M
m=1, set n ← 0 and D−1 ← ∞.

• Step 2: Let Wn be the codebook at the n-th iteration
and ~wn

i the i-th codevector in Wn. Assign each input
vector to the corresponding partition according to the
nearest neighbor rule; determine the distortion Dn =
∑N

i=1

∑

~xm∈Si
d(~xm, ~wn

i ).

• Step 3: If (Dn−1−Dn)/Dn−1 ≤ ε then stop, with Wn

representing the final codebook (designed codebook);
else, continue.

• Step 4: Calculate the new codevectors as

~wn+1

i = C(V(~wn
i )), where C(V(~wn

i )) is the centroid of
the partition V(~wn

i ); set Wn+1 ← Wn; set n← n + 1
and go to Step 2.

In K-Means, the distortion decreases monotonically, since
the codebook is updated to satisfy the nearest neighbor
rule (Step 2) and the centroid condition (Step 4). Thus,
K-Means may be regarded as a hill-climbing technique.

2.2 The Accelerated K-Means
In the accelerated K-Means (AKM), proposed by Lee et

al. [22], the new codevector is updated according to

~wn+1

i = ~wn
i + η(C(V(~wn

i ))− ~wn
i ), (4)

where η is the scale factor, ~wn
i denotes the codevector ~wi at

the end of the n-th iteration and C(V(~wn
i )) is the centroid

of the partition V(~wn
i ).

This method may be seen as a lookahead approach aiming
at improving convergence, while reaching a smaller value of
average distortion. Lee et al. experimentally showed that for
1.0 < η < 2.0 their method converges faster than standard
K-Means and results in a better codebook in terms of mean
square quantization error. In the experiments reported in
[22], when the value of η is about 1.8, the algorithm generally
achieves good performance. It is worth mentioning that this
method demands essentially the same computational effort
of K-Means for each iteration, since the additional compu-
tation of Eq. (4) presents low complexity when compared to
the centroid computation. In fact, η = 1.0 implements the
standard K-Means.

3. BACKGROUND AND RELATED WORK
This section provides some background and related work

regarding adaptive EAs and MAs, as well as structured pop-
ulation models such as the CGA, TBGA and their variants.

3.1 Parameter Adaptation in EAs
Adaptation of EAs parameters and operators, such as mu-

tation rate and crossover, has been heavily studied over the
past decades [10, 18]. For instance, in one of Evolution
Strategies (ES) adapting schemes, the mutation operator is
adjusted through the concatenation of the variances used in
Gaussian perturbations within the solution’s genotype [10].

In the specific case of MAs, the adaptation of memes (i.e.
local search) is a subject of investigation. Krasnogor and
Smith adopted in [20] the strategy of encoding memes’ pa-
rameters directly into individual’s genotype, thus evolving
memes in an inheritance mechanism. In that work, the au-
thors used self-adaptation in the sense of leaving the decision
of which local search to apply to the evolutionary process it-
self. Other approaches were proposed for memes adaptation
in MAs, but, to date, memes adaptation was not yet in-
vestigated using terrain-based models, though a related ap-
proach has been recently used to adapt memes in spatially
distributed populations [28].

3.2 Cellular Genetic Algorithms
Genetic Algorithms (GAs) are believed to be more effec-

tive as function optimizers when some form of locality or
spatial distribution is imposed on the mating and replace-
ment strategies. This is consistent with some fundamental
beliefs regarding natural evolution, such as Sewall Wright’s
claim that modeling biological evolution requires consider-
ing local interaction and spatial isolation [34]. Two methods
have been commonly employed in EAs: distributing the in-
dividuals into islands or across a grid. Both incorporate
isolation-by-distance, wherein periodic interaction between
distant individuals is accomplished in the island model by
migration, and in the grid-based structure by diffusion. Both
also allow for individuals in different locations to be treated
differently; one early example was the Injection Island GA
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(a) CGA (b) TBGA

Figure 1: (a) Cellular Genetic Algorithm (CGA);
(b) Terrain-Based Genetic Algorithm (TBGA)

developed by Eby et al., in which the authors subdivided
a flywheel optimization problem across subpopulations [9].
Spatial isolation also has an added benefit of better utilizing
parallel architectures, which was actually the initial motiva-
tion for these methods. When researchers discovered that
parallel GAs performed better even when implemented seri-
ally, their fundamental advantages became evident [2, 15].

One particular method of incorporating spatial distribu-
tion into a GA is the Cellular GA (CGA). The term was
coined by Whitley in his work with a cellular automata
model [33]. In a CGA, individuals are assigned to locations
on a grid and mating is limited to within demes (neigh-
borhoods). Demes have been defined in a variety of ways,
includig random walk, fixed topologies, 2 or 3-dimensional
grids, and even by splitting the grid into islands. The lat-
ter was dubbed PEGA by Dorronsoro et al. [8], although it
had been investigated earlier by Gordon and Whitley, who
referred to it as I-CGA [16]. There is empirical evidence
that higher locality (smaller deme) leads to faster and bet-
ter problem solving in most cases [16]. Baluja’s experiments
in which 2-dimensional grids outperformed 3-dimensional
ones [4], is consistent with the preference for smaller demes.

For these and other reasons, one of the most commonly-
used CGAs has a fixed topology with a deme size of 4. Each
individual is processed at every generation, and an individ-
ual’s mate is selected from the best of the four strings lo-
cated above, below, left, and to the right of the individual
(see Fig. 1(a)). Crossover is always performed, yielding two
offspring, and mutation is then applied to each offspring. If
either resulting offspring has a better or equal fitness than
the original node, then that node is replaced by the most fit
offspring. Edge elements wrap around, forming a torus.

The CGA and its island version (I-CGA or PEGA) have
been shown to be effective for numerical optimization, as
well as for travelling salesmen, knapsack, vehicle routing,
and other applications [8, 16].

3.3 Terrain-Based Genetic Algorithm
The Terrain-Based GA (TBGA) is a version of the CGA,

in which various combinations of parameter values appear
in different physical locations of the population, forming a
sort of terrain in which individual solutions evolve [14]. The
motivation for the TBGA is to provide an environment that
contains a diverse combination of parameter settings in the
hopes that individuals will exploit the best ones automat-

ically. The TBGA has been shown to perform well as a
function optimizer, and for automatically determining good
parameter settings for the CGA by tracking the locations
where high fitness strings occur.

Since the CGA as previously described has two dimen-
sions, two parameters can be specified as terrain variables.
For example, in Fig. 1(b), crossover points are linearly spread
along the X-axis, and mutation rates along the Y-axis. Each
cell then has a different combination of parameter settings,
although neighboring cells have similar settings. Note that
the lowest values are placed in the middle, and successively
higher values are alternated from side-to-side, so that the
logically adjacent positions at the extrema (due to the toroidal
property of the grid) are also similar in value.

The TBGA has some drawbacks. One is that the method
proposed for finding good CGA parameters removes its abil-
ity to exploit parameter setting strategies that change over
time. Another drawback is that if a particular set of parame-
ters is optimal, only a few strings are able to use them. Krink
and Ursem devised a clever modification to the TBGA that
corrects this latter deficiency, by creating the TB Patchwork
Model (TBPM) [21], in which strings are allowed to migrate
around the grid, and multiple strings are allowed to inhabit
the same cell. The TBPM thus exploits the discovery of
superior parameter settings immediately and dynamically
and could possibly also discover dynamic parameter setting
strategies that changes over time.

The TBPM is not the only form of CGA in which strings
move around the grid – e.g. Janson et al. have proposed
the Hierarchical CGA (H-cGA) in which strings with higher
fitness are moved towards the center of the grid [19].

3.4 Cellular Memetic Algorithm
A MA consists of three phases in one of its most common

forms: (i) selection of existing solutions for reproduction;
(ii) application of variation operators on the selected solu-
tions to derive new ones; and (iii) the application of indi-
vidual learning (i.e., LS) to improve solutions. A Cellular
MA (CMA) has been defined in [1] as CGAs “[...] wherein
some knowledge of the problem is included [...]”. In that
work, the authors augmented the CGA to include specific
crossover, mutation and LS operators for solving Boolean
Satisfiability (SAT) instances and concluded that those in-
corporations were clearly beneficial for the original CGA.

An adaptive version of CMA has been proposed in [28]
for numerical optimization and has been coined Diffusion
MA (DMA). In DMA, memes (i.e., LS) are randomly as-
signed to individuals. Each individual may perform one of
the different LS available from its neighboring meme pool.
Meme selection is done through a reward mechanism which
relies on the average fitness of the neighbors. Then, the de-
sired meme is adopted by diffusion. This approach differs
from the inheritence mechanism of Krasnogor and Smith [20]
in that memes are not encoded in the genotype and thus
cannot get passed down without an explicit decision.

4. PROPOSED MEMETIC ALGORITHMS
This section introduces a new class of MAs designated as

Terrain-Based MAs (TBMAs). The fundamental difference
between the TBMAs and TBGA concerns the distribution
of memetic material across the terrain, instead of variation
operators parameters. Thus, LS behavior varies according
to the topological coordinates in the grid. In this paper, the
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scale factor η of AKM (Section 2.2) is discretized along the
terrain’s axes, composing the parameter space of TBMAs
for image VQ. In the following, four versions of TBMA are
described. Three of them may be regarded as adaptive MAs.

It should be noted that in the TBMAs, two iterations of
AKM are performed for improving the generated offspring.

4.1 Stationary TBMA
The Stationary TBMA (sTBMA) is the simplest of the

proposed TBMAs. It can be regarded as a TBGA + AKM
memetic approach. The pseudo-code for sTBMA is given in
Algorithm 1. It is worth noting that each individual selects
a mate from its Deme-4 neighborhood and that the scale
factors values (η1, η2) for each of two AKM iterations de-
pend on the individual’s position in the terrain. Also, the
population in sTBMA is updated in a batch procedure.

Algorithm 1 Stationary TBMA (sTBMA)

InitTerrainAndPopulation(T ,P )
while not terminating condition do

for all individuals Wi in P do
// Let (xi,yi) denote the coordinates of Wi ≡Wxi,yi

Wj ← max{Wxi+1,yi
,Wxi,yi+1,Wxi−1,yi

,Wxi,yi−1}
Wi’ ← Crossover(Wi, Wj)
η1 ← ScaleFactor1At(xi,yi)
η2 ← ScaleFactor2At(xi,yi)
LocalSearch(Mutate(Wi’), η1, η2)
Evaluate(Wi’)

end for
for all individuals Wi in P do

if Fitness(Wi’) ≥ Fitness(Wi) then
Wi ← Wi’

end if
end for

end while
return P

Since sTBMA is analogous to TBGA, sTBMA has the
same drawbacks already mentioned in Sect. 3.3.

4.2 Motioner TBMA
The Motioner TBMA (mTBMA) resembles a memetic

TBPM + AKM approach. As stated in Section 3.3, by allow-
ing individuals to migrate around the terrain, the solution
space can be explored under better parameter settings. In
the following, we present some useful definitions.

Definition 1. A city C is a collection of h = 1, · · · , hmax

individuals (citizens) which share the same physical location
in the terrain. The parameter hmax gives the maximum
number of citizens a city can support.

Definition 2. A citizen is an intelligent agent which, at
each generation, performs RULE 1.

Rule 1. if there is a neighbor with better fitness value
at city Cb and |Cb| < hmax, migrate to the city of the best
adapted neighbor; else perform RULE 2 with probability p.

Rule 2. migrate to a random distance-1 cell located some-
where in any of the cardinal directions {N, E, S, W} and
intermediate directions {NE, SE, SW, NW}.

Definition 3. A Mayor is the most fit citizen in a city and
cannot be replaced by any offspring.

Algorithm 2 Motioner TBMA (mTBMA)

InitTerrainAndPopulation(T ,P )
while not terminating condition do

Nc ← CountNumberOfCities(T )
M ← ∅ // Initialize Mayors’ subpopulation
for all cities Ci in terrain do

η1 ← ScaleFactor1At(xi,yi)
η2 ← ScaleFactor2At(xi,yi)
if |Ci| = 1 and Wi is isolated then

LocalSearch(Mutate(Wi), η1, η2)
RandomWalk(T ,Wi) // Migrate isolated citizen

else
// Run |Ci| - 1 generations of GAKM
GAKM(Ci,η1,η2, |Ci| - 1)
M ←M ∪max Ci

end if
end for
P ←

⋃Nc

i Ci −M
P ← P ∪ sTBMA(T ,M) // One generation of sTBMA
MigrateCitizens(T ,P ) // Performs RULES 1 and 2

end while
return P

In Algorithm 2, cities are evolved by Genetic Accelerated
K-Means (GAKM) [3], a steady-state MA that improves off-
spring with two iterations of AKM. In this step, tournament
selection of size 1.5 is used, in which the two best out of three
competitors mate. Replacement is done as follows: gener-
ate two offspring and count the number of genes inherited
from each parent; replace a randomly chosen parent by its
nearest offspring in terms of the number of common genes,
without regard of fitness, if the chosen parent is not the
Mayor. In this way, diversity is expected to be maintained
even in such small cities, while elitism at the subpopulation
level guarantees that the best solutions will not be lost.

To complete a mTBMA generation, isolated cities with
size one are updated with mutation and LS. After this step,
|P |−Nc citzens have been generated and/or mutated, where
Nc is the number of cities over the terrain. Mayors are deter-
mined for the other cities and the subpopulation of Mayors
is evolved by a generation of sTBMA. Thus, mTBMA pro-
duces |P| new citzens per generation. The call sTBMA(T ,M)
permits a relativelly small genetic flow between neighboring
cities. Finally, all citizens have a chance of migrating to
nearby cities or to start a new city (by moving to an empty
cell), according to Rules 1 and 2. It is worth noting that
isolated citizens perform a one-step random walk over the
terrain after having been updated by mutation and LS.

The mTBMA also has two drawbacks: first, Rules 1 and
2 do not guarantee that citizens will use the best parameter
setting at each stage of the optimization process – possess-
ing high fitness does not necessarily mean that it has been
achieved because of their current terrain-values. Second, the
level of discretization of η1 and η2 excludes the possibility of
exploiting intermediate values. Hence, neither sTBMA nor
mTBMA can be said to utilize optimal LS behavior.

4.3 Local Adaptive-sTBMA
The Local Adaptive-sTBMA (LA-sTBMA) performs adap-

tation of LS by changing the terrain-values at the cell level.
Its pseudo-code is the same as sTBMA, except for the exe-
cution of a local adjustment procedure at the end of every
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k generations. This procedure updates the scale factors of
each cell using Eq. (7) and works as follows: let (xi, yi)
and (xb, yb) be the topological coordinates of individual Wi

and of its best fitted neighbor Wb, respectively. Let F (·, ·)
be the sum of the fitnesses of the individuals at (x,y) from
generation 1 to current generation G, or

F (x, y) =
G

∑

t=1

fitness(W t
x,y). (5)

Compute the adjustment factor αi for cell (xi,yi) as

αi =
F (xb, yb)

F (xb, yb) + F (xi, yi)
. (6)

Update the terrain-variable at cell (xi,yi) as

η(xi, yi) = (1− αi)× η(xi, yi) + αi × η(xb, yb). (7)

After a number of generations, which will depend on the
choice of k, the terrain is expected to converge to suitable
values of both η1 and η2 at all cells, thus performing an
online tuning of parameters. Note that, unlike other terrain-
based GAs and MAs, the terrain parameters are not uniform
along a row or column, because the adjustment factor given
above is not done on the axes but is done independently for
each cell. Although, like the TBGA and TBMA, neighboring
cells are still likely to have similar terrain values.

One drawback of LA-sTBMA is that it cannot turn back
to lost terrain-values. Hence, LA-sTBMA may be more use-
ful in problems for which optimal parameters do not have a
large variance in time.

4.4 Hierarchical Adaptive-TBMA
In the Hierarchical Adaptive-TBMA (HA-TBMA), indi-

viduals are ranked by fitness and compete for locations near
the top ranked individual (leader) by swapping positions in
the terrain. Again, the pseudo-code is the same as sTBMA,
except for the following modifications.

First, at each generation, individuals execute the rule

Rule 3. if there is a neighbor of lower rank on the short-
est path to the leader, swap positions.

Hence, near-ranked individuals are expected to mate, thus
implying a hierarchy relation upon the terrain. Note that
unlike mTBMA, each cell supports only one individual. The
HA-TBMA resembles H-cGA [19], mentioned in Section 3.3.
However, the cell that the leader seeks to follow is not fixed;
it may change throughout the algorithm. The goal of the
leader is to reach the cell which yields the highest success
frequency (SF ). The SF for cell (x,y) at generation G is

SF (G, x, y) =
G

∑

t=2

I(t, x, y), G ≥ 2, (8)

with

I(t, x, y) =

{

1 if fitness(W t
x,y) > fitness(W t−1

x,y ),
0 otherwise.

(9)

The leader thus aims to take advantage of the best pa-
rameter settings, leaving behind poorer cells to the less fit
individuals. Furthermore, terrain-values are adjusted every
k generations: let (xL, yL) be the coordinates of the leader.
The terrain-values of cell (xi, yi) are updated as

η(xi, yi) =
( |P | −R(Wi) )× η(xi, yi) + η(xL, yL)

( |P | −R(Wi) ) + 1
, (10)

where R(Wi) is the rank of individual Wi (note that WL

has R(WL) = 1). In this approach, memes are gradually
changed towards the terrain-values in use by the leader.
Eq. (10) weights the leader’s influence according to individ-
ual rank: cells of lower ranked individuals are more suscep-
tible to changes than higher ranked ones. Thus, the leader’s
influence propagates throughout the terrain like a “tsunami
wave”, in which the amplitude of parameter change becomes
larger at further away cells occupied by worse individuals.

The HA-TBMA can also be said to have the same draw-
back mentioned for LA-sTBMA in Sect. 4.3.

5. EXPERIMENTAL METHODOLOGY
In all experiments, 5×5 2-D grids were used. Thus, |P |=25.

Both η1 and η2 assumed the sequence [1.3 1.1 1.0 1.2 1.4]
for each axis. Although earlier in Section 2.2 we stated that
η=1.8 was known to be a good setting for AKM, previous
results using AKM within an MA have shown that lower
values for η tend to be more effective [3]. We include 1.0 in
the range of possible settings [1.0...1.4], because at η=1.0,
AKM is the same as standard K-Means, giving the TBMAs
the option of utilizing that if it turns out to be desirable.

Individuals encode codebooks W , thus, genes are code-
vectors ~wi, i = 1, · · · , N , in which N is the codebook size.
The variation operators are defined as follows:

Crossover – An n-point crossover is used to generate off-
spring, where n is a random integer in {1, · · · , N}. It should
be noted that n = N is equivalent to uniform crossover.

Mutation – For each gene ~wi, create a random noise vector
~U = [u1 · · ·uK ]T , uj ∼ N(0, 1) ∀ 1 ≤ j ≤ K and compute

~wi ← ~wi + ~U , with probability pmut.
The fitness function is Peak Signal-to-Noise Ratio (PSNR),

which assesses the objective quality of an image reconstructed
by a given codebook. The PSNR is computed as

PSNR = 10× log10

(

2552

MSE

)

, (11)

with

MSE =
1

K|X|
×

N
∑

i=1

∑

~xm∈Si

‖~xm − ~wi‖
2. (12)

(a) Lena. (b) Mandrill. (c) Peppers.

Figure 2: Images used as training sets.

The coding performance of the designed codebooks is eval-
uated on 256 × 256 monochrome images, originally en-
coded at 8 bpp: Lena, Mandrill and Peppers (Fig. 2).
The distortion threshold ε = 10−3 is assumed for design-
ing codebooks with K-Means. VQ with dimension K=16
is used, corresponding to the usage of 4×4 blocks of pixels.
Codebook sizes of N=256 and 512 are considered, corre-
sponding to coding rates of 0.5 and 0.5625 bpp. Also note
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Figure 3: Average fitness of the best individual ob-
tained at each generation, averaged over 20 runs on
Peppers at 0.5625 bpp.

that, in CMA, two iterations of standard K-Means are per-
formed for improving offspring. The mutation probability
is pmut = 0.00025 for N = 256 and pmut = 0.000125 for
N = 512, which correspond to ≈ 8% of the offspring under-
going mutation each generation. In both LA-sTBMA and
HA-TBMA, terrain-values are adjusted every k = 2 genera-
tions. In mTBMA, hmax is set to b|P |/2c = 12 and p=0.2
(probability of migrating/starting a new city). Finally, 100
generations are performed for both CMA and the TBMAs.

6. RESULTS AND DISCUSSION
The mTBMA outperformed all other MAs in every case

on the image VQ test suite used in this paper. An example
of the performance of all investigated MAs on Peppers at
0.5625 bpp is plotted in Fig. 3, which shows the average fit-
ness of the best individual obtained at each generation, aver-
aged over 20 runs. It is observed that, by the end of 100 gen-
erations of CMA, the average fitness is around 32.7 dB. The
mTBMA requires only 24 generations to achieve the same
performance, a reduction of roughly 75% on the number
of fitness evaluations computed before achieving the PSNR
value obtained with CMA.

Table 1 summarizes the average final performance of all
investigated methods. In every case, the MAs outperform
K-Means in terms of average final PSNR values obtained
for the images reconstructed with the resulting codebooks.
Among the MAs, all of the various terrain-based models out-
perform the CMA, although some improvements are more
pronounced than others.

Among the TBMAs, the mTBMA achieved the most sig-
nificant improvements in all cases. There is not much dif-
ference in performance between the sTBMA, LA-sTBMA
and HA-TBMA, although the HA-TBMA seems to possess a
slightly better performance among those three TBMAs. The
most dramatic gain was for Peppers at 0.5625 bpp (N=512),
where mTBMA achieved an improvement of 2.09 dB, a re-
duction of ≈ 38% in MSE over K-Means. In addition, as
the codebook size (N) rises, the gains achieved with the
investigated MAs over K-Means increase. This result sup-
ports the superiority of MAs over standalone hill-climbing
LS techniques on the task of vector quantizer design.

The effects of the adjustment mechanisms implemented
in HA-TBMA and mTBMA are contrasted in Fig. 5(a) and

Figure 4: Terrain-values adopted by the best indi-
vidual at each generation of best mTBMA run on
Peppers at 0.5 bpp.

Fig. 5(b), respectively. Those figures show the terrain values
adopted by the best individual at each generation, averaged
over 20 independent simulations on Lena at 0.5625 bpp in
Fig. 5(a) – and Peppers at 0.5 bpp in Fig. 5(b). Clearly the
best individual in HA-TBMA settles on specific parameter
values by about the 30th generation, with very little sub-
sequent change. This was also observed for LA-sTBMA –
in both TBMAs, η1 and η2 quickly converge to nearly the
same pair of values at every cell. Interestingly, for 97% of
the generations of HA-TBMA shown in Fig. 5(a), η1 > η2

holds, which is actually a reasonable heuristic for the prob-
lem of adjusting the scale factor in AKM if it were to be
used standalone. For instance, Paliwal and Ramasubrama-
nian proposed a linearly-decreasing variable scale factor as
a function of the number of iterations of AKM [30].

Despite the online tuning of parameters performed by HA-
TBMA and LA-sTBMA, the adjustment mechanism did not
lead to significant improvements over the results achieved
with the simpler sTBMA (Table 1). The fact that mTBMA
did exhibit significant improvement in every case suggests
that the greater variability in terrain-values over time shown
in Fig. 5(b) may play a valuable role in effective meme adap-
tation. In this regard, the mTBMA presumably utilizes
migration for the tracking of suitable dynamically-changing
terrain-values within the parameter space, and then utilizes
cities for the building of distinct subpopulations that ex-
ploits those good parameter sequences.

Meme values utilized in very good individual mTBMA
runs also changed over time. For example, the values of η1

and η2 for the single run that produced the best codebook
for Peppers at 0.5 bpp (with a final fitness of 30.88 dB) are
plotted in Fig. 4. The behavior is similar to the average
behavior described earlier, and corroborates that exploiting
dynamic adaptation of memes is a feature not only of the
average performance, but also of the best performance for
the algorithms that we tested.

Furthermore, the variability in terrain values utilized by
mTBMA does not appear to simply be a chaotic sampling of
the parameter space – there is an apparent pattern wherein
as η1 increases, η2 decreases and vice-versa. This is evi-
dent both in the relative symmetry of the plots in Fig. 5(b),
and the shape of the sample cluster of points (η1, η2) in
Fig. 5(c). mTBMA has not only found an effective set of pa-
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Table 1: Average PSNR (dB) values for codebooks designed with K-Means, CMA and the TBMAs.
Image (N) K-Means CMA sTBMA LA-sTBMA HA-TBMA mTBMA
Lena (256) 29.91 ± 0.08 30.85 ± 0.05 30.89 ± 0.05 30.90 ± 0.04 30.89 ± 0.05 31.03 ± 0.04
Lena (512) 31.14 ± 0.08 32.82 ± 0.08 32.90 ± 0.09 32.89 ± 0.09 32.94 ± 0.07 33.10 ± 0.05

Mandrill (256) 25.22 ± 0.02 25.50 ± 0.02 25.51 ± 0.02 25.52 ± 0.02 25.53 ± 0.02 25.58 ± 0.01
Mandrill (512) 26.19 ± 0.03 26.68 ± 0.04 26.70 ± 0.03 26.70 ± 0.03 26.71 ± 0.02 26.79 ± 0.02
Peppers (256) 29.70 ± 0.05 30.67 ± 0.05 30.70 ± 0.04 30.69 ± 0.06 30.71 ± 0.04 30.83 ± 0.03
Peppers (512) 30.92 ± 0.09 32.68 ± 0.11 32.79 ± 0.06 32.81 ± 0.07 32.83 ± 0.10 33.01 ± 0.08

(a) Meme values in HA-TBMA (b) Meme values in mTBMA (c) Cluster of memes in mTBMA

Figure 5: Terrain-values adopted by the best individual at each generation of TBMAs averaged over 20 runs.
(a) HA-TBMA on Lena at 0.5625 bpp; (b) mTBMA on Peppers at 0.5 bpp; (c) Cluster of points (η1, η2) in
mTBMA on Peppers at 0.5 bpp.

rameter values corresponding to the trajectory being taken
through the solution space, it has incidentally also revealed
that simultaneous extrema for both values (η1 and η2) are
undesirable.

7. CONCLUSION
We have investigated the adaptive capabilities of a class

of Memetic Algorithms called Terrain-Based Memetic Al-
gorithms (TBMA). Specifically, four particular implemen-
tations dubbed Stationary TBMA (sTBMA), Local Adap-
tive Stationary TBMA (LA-sTBMA), Hierarchical Adaptive
TBMA (HA-TBMA), and Motioner TBMA (mTBMA). The
LA-sTBMA, HA-TBMA, and mTBMA can be considered
adaptive MAs. We assessed the efficacy of the algorithms
by testing them on a set of image Vector Quantization prob-
lems, and compared their performance against each other,
as well as against a previously-described Cellular Memetic
Algorithm and K-Means.

The MAs outperformed K-Means in all cases. Among the
MAs, the TBMAs outperformed CMA in all cases. Among
the TBMAs, the mTBMA significantly outperformed the
other TBMAs and was always the best performing algo-
rithm. Visualization of the progress of meme adaptation
over time support the following conclusions:

• The sTBMA, LA-sTBMA, and HA-TBMA are able to
find excellent meme values.

• The mTBMA is able to find even better sequences of
dynamically changing meme values.

That is, although the adaptive sTBMA, LA-sTBMA, and
HA-TBMA are all able to settle on very good parameters,

the reason the mTBMA exhibits superior performance is
that it is able to find and exploit dynamically-changing pa-
rameter values that correspond effectively with the trajec-
tory that the VQ codebooks happen to be taking through the
solution space during evolution. Interestingly, the algorithm
that performed the best was the one that most closely resem-
bled real-world human cultural dynamics, with individuals
allowed to move semi-freely and form cities in a dynamic ter-
rain. We conclude that memetic evolution is most effective
when it can adapt dynamically, for the problems we tested.
Additional research applying the mTBMA across a larger
and more diverse test suite is a logical next step.
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