
Instruction Scheduling for the GPU on the GPU

Ghassan Shobaki1, Pınar Muyan-Özçelik1, Josh Hutton1, Bruce Linck1,

Vladislav Malyshenko1, Austin Kerbow2, Ronaldo Ramirez-Ortega1, and Vahl Scott Gordon1

1Department of Computer Science, California State University, Sacramento, United States
2GPU-Compute Compiler Team, Advanced Micro Devices, United States

ghassan.shobaki@csus.edu, pmuyan@csus.edu, gordonvs@csus.edu

Abstract—In this paper, we show how to use the GPU to
parallelize a precise instruction scheduling algorithm that is based
on Ant Colony Optimization (ACO). ACO is a nature-inspired
intelligent-search technique that has been used to compute precise
solutions to NP-hard problems in operations research (OR). Such
intelligent-search techniques were not used in the past to solve
NP-hard compiler optimization problems, because they require
substantially more computation than the heuristic techniques used
in production compilers. In this work, we show that parallelizing
such a compute-intensive technique on the GPU makes using it
in compilation reasonably practical. The register-pressure-aware
instruction scheduling problem addressed in this work is a multi-
objective optimization problem that is significantly more complex
than the problems that were previously solved using parallel
ACO on the GPU. We describe a number of techniques that we
have developed to efficiently parallelize an ACO algorithm for
solving this multi-objective optimization problem on the GPU.
The target processor is also a GPU. Our experimental evaluation
shows that parallel ACO-based scheduling on the GPU runs
up to 27 times faster than sequential ACO-based scheduling
on the CPU, and this leads to reducing the total compile time
of the rocPRIM benchmarks by 21%. ACO-based scheduling
improves the execution-speed of the compiled benchmarks by
up to 74% relative to AMD’s production scheduler. To the best
of our knowledge, our work is the first successful attempt to
parallelize a compiler optimization algorithm on the GPU.

Index Terms—parallel compiler optimization, instruction
scheduling, Ant Colony Optimization (ACO), GPU computing,
multi-objective optimization

I. INTRODUCTION

Some important compiler optimization problems, such as

instruction scheduling and register allocation, are NP-hard

problems [1]. An NP-hard problem has no known polynomial-

time algorithm that computes the exact solution to every

instance of the problem. Production compilers solve these NP-

hard optimization problems using heuristic approaches, as it

has been widely believed that implementing precise algorithms

for NP-hard problems within a compiler is impractical.

In Operations Research (OR), researchers have successfully

computed precise, and often exact, solutions to NP-hard

problems using Artificial Intelligence (AI) techniques, including

Branch-and-Bound (B&B), Constraint Programming (CPR)

and Ant Colony Optimization (ACO). Such techniques are

based on intelligent searches that require substantially more

computation than heuristic approaches. Despite the success

of these intelligent-search techniques in OR, they have not

been applied to NP-hard compiler optimization problems,

because that was not feasible in the past. However, today’s

powerful computing platforms have motivated some researchers

to explore applying AI techniques to NP-hard problems in

code optimization [2]–[11]. The results of this recent research

show that applying AI techniques may produce code with

significantly better performance. For example, Shobaki et al.

show that solving instruction scheduling using B&B gives

significantly better performance than a well-tuned heuristic on

an AMD Graphics Processing Unit (GPU) target [10].

Recent research on applying AI techniques to compiler

optimizations shows that the increase in compile time caused by

using such expensive techniques can be controlled by applying

them selectively to the hot code and setting reasonable time

limits [8], [9]. Although such measures can limit the increase

in compile time, using AI techniques still leads to a significant

increase in compile time relative to using heuristics.

In this work, we explore using the GPU to parallelize an AI

technique for solving the register-pressure-aware (RP-aware)

instruction scheduling problem. The AI technique that we

parallelize is ACO [12]. We perform ACO-based scheduling

on the GPU, while the rest of the compilation stages are

performed on the CPU. The GPU is also the target processor

that we generate code for. So, we show how to schedule for the

GPU using an AI technique that is parallelized on the GPU.

In RP-aware instruction scheduling, the objective is finding

an instruction order that achieves the best possible balance

between the two conflicting objectives of minimizing the sched-

ule length and minimizing register pressure. Minimizing the

schedule length can be also viewed as maximizing instruction-

level parallelism (ILP). Maximizing ILP is important on a GPU

target, because a GPU does not reorder instructions within a

thread. Register pressure (RP) is the number of virtual registers

that have overlapping live ranges, and thus must be assigned

to different physical registers. Minimizing RP is particularly

important on a GPU target, because the number of registers

used in each thread determines occupancy, which is the number

of thread groups that may run concurrently, as detailed in the

body of the paper.

Balancing ILP and RP is a challenging problem, because

executing more independent instructions in parallel (maximiz-

ing ILP) tends to increase the demand for registers. Even

optimizing one of these two objectives (ILP or RP) is NP-hard

[1]. Current production compilers solve this problem using

heuristics (usually greedy heuristics). However, recent research

979-8-3503-9509-9/24 © 2024 IEEE

Accepted for publication by IEEE. © 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

435

https://www.acm.org/publications/policies/artifact-review-and-badging-current

on both CPUs [7], [9] and GPUs [10], [13] has shown that these

heuristics may, in some cases, produce poor schedules that

significantly degrade performance. Previous work shows that

instruction scheduling has a higher impact on the performance

of GPU programs than on the performance of CPU programs.

ACO is a population-based optimization technique inspired

from nature. Ants in nature find short paths between a food

source and their nest by depositing pheromones as they carry

food. In an ACO algorithm, a pheromone table is used to

simulate the deposition and dissipation of pheromones. Dorigo

et al. [14] introduced ACO and applied it to the Traveling

Salesman Problem (TSP). In later research, ACO was applied

to other combinatorial optimization problems.

In previous work, an ACO algorithm was proposed for

solving the RP-aware instruction scheduling problem [11] based

on the ACO algorithm described by Gambardella and Dorigo

[15] for solving the Sequential Ordering Problem (SOP), which

is a generalization of the TSP [16]. The ACO algorithm for the

RP-aware scheduling problem capitalizes on the similarities

between scheduling and the SOP.

Despite these similarities, the RP-aware instruction schedul-

ing problem is much more complex than the SOP. First, the SOP

is a single-objective optimization problem, while the RP-aware

scheduling problem is a multi-objective optimization problem

(MOOP) [17], [18]. The first objective is minimizing RP and

the second objective is minimizing the schedule length. Second,

the RP-aware scheduling problem involves latency constraints,

and thus the solution to a given instance of the problem is a

schedule (an assignment of a cycle to each instruction) not

just an order as in the SOP.

These complexities make parallelizing the ACO-based

scheduling algorithm much more challenging than parallelizing

the ACO algorithm for the SOP. Not all the techniques that

have been proposed to parallelize the ACO algorithm for the

SOP can be applied to RP-aware scheduling.

Parallelizing ACO-based scheduling is particularly challeng-

ing on the GPU, because different schedules may have different

lengths, which increases thread divergence, a GPU-specific

factor that affects performance. A main contribution of this

paper is proposing a number of techniques for minimizing this

divergence in ACO-based scheduling (Section V-B)

Parallel compilation has been tackled by researchers since

the 1970s [19]. After the advent of GPU computing, GPUs

have been used to accelerate some compiler algorithms. Most

of these algorithms are analyses, such as the points-to analysis

[20]–[22], inter-procedural data-flow analysis [23], higher-order

control-flow analysis [24] and inter-procedural static analysis

of large-scale system code [25].

To the best of our knowledge, our work is the first work

on parallelizing a compiler optimization on the GPU. Some

previous research tackled compiler-related algorithms, such as

graph coloring [26], [27]. However, that work was applied to

general graphs, not to conflict graphs in a compiler. Our work

directly addresses a compiler optimization problem.

The results of our experimental evaluation show that parallel

ACO-based scheduling on the GPU runs up to 27 times faster

than sequential ACO-based scheduling on the CPU, and this

leads to reducing the total compile time of the rocPRIM

benchmarks [28] by 21% relative to using sequential ACO-

based scheduling on the CPU. ACO-based scheduling improves

the execution speed of the compiled benchmarks by up to 74%

relative to AMD’s production scheduler.

II. BACKGROUND

A. Problem Definition

Instruction scheduling is a compiler optimization in which

instructions are reordered to achieve better performance. Better

performance is achieved by hiding latencies and minimizing

register pressure. This paper focuses on the instruction schedul-

ing pass that is invoked before register allocation (pre-allocation

instruction scheduling).

In many compilers, including the LLVM compiler used in

this work, scheduling is done within a basic block [1]. The

input to the instruction scheduler is an instruction sequence

with dependencies represented by a data dependence graph

(DDG). In a DDG, a node represents an instruction, an edge

represents a dependency and an edge label represents a latency.

An example DDG is shown in Figure 1. The output is a

schedule, which is an assignment of a machine cycle to each

instruction. The objective is finding a schedule that achieves

the best possible balance between minimizing the schedule

length and minimizing RP. The schedule length is the number

of cycles used in the schedule, and RP is modeled using the

cost function described below.

The number of cycles in the schedule depends on the machine

model. Our implementation of the proposed algorithm supports

a general machine model. The experimental results, however,

were produced using a simple machine model, in which the

processor can issue one instruction of any type in each cycle.

This simple model still captures instruction latencies, and this

appears to be the most important consideration.

RP computation is based on the Def and Use sets of the

scheduled instructions. The Def set of an instruction is the set

of registers that are defined by that instruction, and the Use

set is the set of registers that the instruction uses. Given an

instruction schedule, the RP for a given data type at a given

point in the schedule is the number of registers of that type

that are live at that point.

Multiple cost functions have been used for representing RP

during scheduling [8]–[10]. In this work, we use the adjusted

peak register pressure (APRP) cost function that was introduced

by Shobaki et al. [10] specifically for a GPU target.

The peak register pressure (PRP) of a given data type in a

given schedule is the maximum value of that type’s RP at any

point in the schedule. On a GPU, multiple PRP values may

give the same occupancy. The APRP of a given PRP value x

is defined as the maximum PRP that gives the same occupancy

as x. For example, on the AMD GPU used in this work, a PRP

of 24 vector general-purpose registers (VGPRs) or less gives

the maximum occupancy of 10, while PRP values in the range

[25–28] give an occupancy of 9. Therefore, PRP values in the

436

range [1–24] are mapped to an APRP of 24 and PRP values

in the range [25–28] are mapped to an APRP of 28.

In previous work, two different approaches have been

explored for solving the RP-aware scheduling problem, which

is a two-objective optimization problem. The first approach is

minimizing a weighted sum of the schedule length and the RP

cost [8], [9]. The second approach is a two-pass approach in

which RP is treated as a primary objective that is minimized

in the first pass (the RP pass), while schedule length is treated

as a secondary objective that is minimized in the second pass

(the ILP pass) [10]. Since the two-pass approach was found to

work better on the GPU [10], we use it in this work.

B. GPU Computing

In GPU computing, the GPU is utilized to accelerate

compute-intensive applications with data parallelism in many

different areas, including computer vision, machine learning

and many more [29]. An ACO algorithm is a compute-intensive

algorithm that involves data parallelism, since all ants perform

the same computation but on different data.

HIP [30] is a GPU programming environment introduced by

AMD, which allows writing portable code that can run on AMD

or NVIDIA GPUs. A HIP application consists of a sequential

part that is run on the CPU and a data-parallel part that is

launched on the GPU as a kernel. A kernel is launched on the

GPU as a grid of blocks with each block consisting of the same

number of threads. Each thread executes the kernel code using

a different data element, and all threads are executed on the

Compute Units (CUs) in parallel. The GPU thread scheduler

assigns different blocks to different CUs.

A block consists of wavefronts. A wavefront is a group

of threads that are executed in lockstep. The corresponding

term on NVIDIA GPUs is a warp. On the GPU used in this

work, a wavefront consists of 64 threads. Each wavefront is

executed by a single SIMD unit. In order to efficiently utilize

the multiple SIMD units within a CU, each CU should have

multiple wavefronts, preferably from different blocks. The

SIMD occupancy of a kernel running on an AMD GPU is the

number of wavefronts that can be resident on each SIMD unit.

Hence, occupancy determines the number of wavefronts that

can run concurrently on the GPU.

III. PREVIOUS WORK

ACO is a population-based technique that was introduced by

Dorigo et al. [14] for solving hard combinatorial optimization

problems. Since an ACO algorithm has an inherent parallel

nature, different parallelization strategies have been proposed.

Pedemonte et al. [31] provide a comprehensive survey and a

taxonomy of ACO parallelization strategies.

Many of the previously proposed parallel ACO algorithms

target the TSP [14], [32]–[47]. However, parallel ACO algo-

rithms have also been proposed for solving other optimization

problems, including the Maximum-Weight Clique Problem [48],

the Quadratic Assignment Problem [49], designing multiproduct

batch plants [50] and resource-constrained job scheduling [51].

These approaches use different parallel architectures, including

supercomputers [32], multi-core CPUs [36], [48], [49], [51],

[52] and GPUs [34], [37]–[47], [50], [52], [53].

Because ACO is a computationally expensive technique, only

a limited number of attempts have been made to apply it to a

compiler optimization problem. Lintzmayer et al. apply ACO

to register allocation [54], and Shobaki et al. apply ACO to

RP-aware instruction scheduling [11]. In the current paper, we

describe how to parallelize the ACO instruction scheduling

algorithm of Shobaki et al. on the GPU.

The RP-aware scheduling problem addressed in this work

is a multi-objective optimization problem with precedence

constraints. These two characteristics make this problem more

complex than most of the other problems that have been solved

using parallel ACO. As indicated by Falcón-Cardona et al. [55],

the parallelization of ACO has not been yet properly exploited

in a multi-objective optimization context. Mora et al. [56]

present a study on colony-level parallelization schemes for

multi-colony, multi-objective ACO algorithms. In our work,

we use ant-level rather than colony-level parallelization.

Cano et al. [57] propose a GPU parallelization of the

multi-objective grammar-based Ant Programming algorithm

for classification introduced by Olmo et al. [58]. However, the

problem that they target (classification), is a machine-learning

problem not an optimization problem.

Parallel ACO approaches for precedence-constrained prob-

lems are also limited. Among the above-mentioned approaches,

only Thiruvady et al. [51] tackle a precedence-constrained

problem, but they use multi-core CPUs not GPUs. The

instruction scheduling problem is similar to the SOP since it has

precedence constraints. Although sequential ACO approaches

have been proposed for solving the SOP [15], [59], [60], we

are not aware of any parallel ACO approach for solving the

SOP.

Because the RP-aware scheduling problem is both a multi-

objective problem and a precedence-constrained problem,

none of the previously proposed parallel ACO approaches

directly applies to it. For instance, the work of Cecilia et

al., who propose a fine-grained parallel ACO approach for

solving the TSP [37], [38] would not work efficiently for a

precedence-constrained problem. In the TSP, which does not

have precedence constraints, the number of candidate cities is

always equal to the number of unvisited cities, which provides

a high degree of data parallelism in the next-city-selection step.

In the instruction scheduling problem, precedence constraints

limit the number of candidate instructions, and thus limit the

degree of data parallelism in the next-instruction-selection

step. Therefore, applying the algorithm of Cecilia et al. to a

precedence-constrained problem would result in a substantial

amount of unnecessary computation.

Menezes et al. [43] perform a comparison between a coarse-

grained parallel ACO approach (mapping an ant to a thread, as

we do in this paper) and a fine-grained parallel ACO approach

(mapping an ant to a block or a wavefront, as proposed by

Cecilia et al.) for solving the TSP. Their results show that there

is no clear best strategy and that the performance depends on

the problem size and the number of ants.

437

IV. ALGORITHM DESCRIPTION

A. Sequential Algorithm

On a high level, the sequential ACO scheduling algorithm

proposed by Shobaki et al. [11] consists of two passes. In

the first pass (the RP pass), ILP is ignored and the algorithm

searches for a schedule that minimizes RP. In the second

pass (the ILP pass), latencies are taken into account, and the

algorithm searches for the shortest schedule that maintains the

best RP found in the first pass. Thus, in the second pass, the

best RP found in the first pass is treated as a constraint.

The ACO algorithm is an iterative algorithm. In each

iteration, it simulates a certain number of ants, each of which

constructs a candidate schedule. Each schedule is dependent

on the pheromone values stored in the pheromone table, the

guiding heuristic and a random factor. With this randomization,

each ant is likely to produce a different schedule. At the end

of each iteration, the best schedule produced by any ant in that

iteration (the iteration winner) is used to update the pheromone

table. The algorithm terminates when the cost of the global best

schedule is equal to a pre-computed lower bound (LB) or when

a certain number of iterations, called the termination condition,

have been performed without finding an improvement.

The pheromone table guides the construction of candidate

schedules. It is a two-dimensional table with n rows and n

columns, where n is the number of instructions. For any two

instructions i and j, the value τij in the table is the amount of

pheromone placed on the link between instructions i and j.

At the end of each iteration, the pheromone table entry of

each link (i, j) in the iteration winner is incremented according

to a certain formula [11] to increase the chances of constructing

similar schedules in the next iterations.

A candidate schedule is constructed by selecting one

instruction at a time from the ready list. The ready list is a list

containing the unscheduled instructions whose dependencies

have been satisfied. Selecting the next instruction is done

randomly, but with a bias that takes into account the pheromone-

table entries and the guiding heuristic. The formula for

performing this may be found in the original paper [11].

That selection formula is designed to balance exploitation

and exploration. Exploitation refers to using the pheromone

table to bias the search towards selecting schedules that are

similar to the best schedules found so far. Exploration refers to

using randomization to bias the search towards discovering new

schedules. In the second pass, the iteration winner is selected

from the schedules that satisfy the RP constraint.

At the end of each iteration, another formula is used to

reduce the amount of pheromone in each table entry to

simulate the decay of pheromones [11]. This formula involves

a parameter, called the decay factor, that controls the rate at

which pheromones are dissipated. Experimentally, we used a

decay factor of 0.8.

Before the ACO search starts, an initial schedule is con-

structed using a heuristic, such as the Critical-Path (CP)

heuristic [1], the Last-Use-Count heuristic [61] or AMD’s

heuristic. Initially, this schedule is the global best schedule.

B. Parallelization on the GPU

In the above-described ACO algorithm, it is noted that the

schedule construction performed by each ant is independent

of other ants, and thus ants can construct their schedules in

parallel. To exploit this, we parallelize the ACO algorithm by

mapping each ant to a GPU thread. Whenever ACO is invoked

on a scheduling region, we launch a GPU kernel that performs

the schedule construction using multiple ants in parallel and

then updates the pheromone table at the end of each iteration.

Our parallel algorithm is implemented in HIP for an AMD

GPU. The GPU is both the target processor and the processor

that is used to perform scheduling during compilation. An AMD

GPU is used because AMD’s GPU compiler is an open-source

LLVM-based compiler. The parameters of our scheduling kernel

are selected to achieve the following:

• Avoiding block-level synchronization by ensuring that

all the threads in a block execute in lockstep. This is

achieved by setting the number of threads per block to

the wavefront size, which is 64 threads on the GPU that

we use.

• Distributing the work across multiple CUs to better utilize

the CU resources. This is achieved by selecting the number

of blocks (which is equal to number of wavefronts in our

case) to be greater than the number of CUs. Since the

GPU that we use has 60 CUs, we launch 180 blocks.

With the above two settings, each launch of the scheduling

kernel has a total of 11,520 threads, which corresponds to

11,520 ants constructing schedules in parallel.

After completing memory allocation and data transfer from

the CPU to the GPU, we launch a cooperative GPU kernel.

The kernel has a main loop that is repeated until a schedule of

cost equal to the LB is found or the termination condition is

satisfied. In each iteration, all threads construct their schedules

in parallel. A different random seed is input to each thread

to maximize the chances of constructing a different schedule

from other threads.

After the schedule construction stage is complete, all threads

are synchronized. At that point, all threads cooperate to find

the best schedule constructed in that iteration using a parallel

computational pattern called a reduction [62]. Then all threads

are synchronized again to work in parallel on updating the

pheromone table based on the iteration’s best schedule.

After completing the pheromone table update, the first thread

compares the iteration’s best schedule with the global best

schedule found so far. If the iteration’s best schedule is better,

the first thread updates the global best schedule. If the cost of

this schedule is equal to the pre-computed LB, the first thread

sets a flag for terminating the whole kernel with an optimal

solution. Otherwise, the first thread increments the variable

that counts the number of iterations without improvement

(the termination condition). At the end of the iteration, all

threads are synchronized, and each thread resets its schedule to

start constructing a new schedule. After the kernel completes

executing, the global best schedule is copied from the GPU to

the CPU and memory is freed.

438

C. Example

The proposed algorithm is illustrated by the example shown

in Figure 1 [10]. The Def and Use sets of each instruction are

shown in the DDG, where r1, r2, . . . , r7 are virtual registers.

For simplicity, we assume that scheduling is done for a single-

issue machine and that the ACO algorithm performs only one

iteration in each pass with two ants per iteration.

In the first pass, the algorithm ignores latencies and focuses

on searching for a minimum-RP schedule. The schedule found

by each ant is shown in Figure 1.b. The details of constructing

these schedules are omitted to focus on the high-level ideas. The

schedule of Ant 1 has a PRP of 4, because each of Instructions

A, B, C, and D opens a new live range. The schedule of Ant

2 has a PRP of 3, because Instruction F in Cycle 3 closes the

live ranges of C and D. Therefore, the best PRP at the end of

the first pass is 3.

In the second pass, latencies are considered. Stalls are added

to the best-RP schedule found in the first pass (the schedule of

Ant 2) to satisfy latency constraints. This produces the leftmost

schedule in Figure 1.c. This schedule is the initial schedule in

the second pass, and its PRP of 3 is set as the target PRP.

Next, each ant constructs a schedule that meets the PRP

target, and the shorter schedule is selected as the iteration’s

best schedule. If at any point in the construction of an ant’s

schedule, the PRP exceeds 3, that ant is terminated. In this

example, both ants manage to find schedules that meet the PRP

target of 3. These schedules are shown in Figure 1.c. Since the

schedule of Ant 2 is shorter (it uses only 10 cycles, while the

schedule of Ant 1 uses 12 cycles), that schedule becomes the

iteration’s winner. Furthermore, since that schedule is better

than the global best schedule at that point, the global best

schedule is updated to the schedule of Ant 2.

Since in this example, the number of iterations per pass is

only one, the algorithm will terminate with the final schedule

being the schedule of Ant 2, which is optimal in this case.

We note that in the second pass, different ants may construct

schedules of different lengths (different numbers of stalls).

Some stalls are necessary to satisfy the latency constraints,

while other stalls are optionally added to minimize RP. In

the schedule of Ant 2 in Figure 1.c, the stall in Cycle 8

is a necessary stall to satisfy the latency constraint between

Instructions C and F. After scheduling Instruction C, the ready

list is empty and the only valid option at that point is scheduling

a stall in Cycle 8.

In contrast, the stall in Cycle 4 of the same schedule is an

optional stall that has been added to reduce the chances of

violating the RP constraint. After scheduling Instruction D, the

ready list contains Instruction C. So there are two options at

that point: scheduling Instruction C and increasing PRP to 4,

or scheduling a stall to wait until Instruction E becomes ready.

Taking the latter option reduced the PRP to 2 at Cycle 6.

It is not always clear whether scheduling an optional stall

is beneficial. Scheduling too many optional stalls may result

in an excessively long schedule. Our ACO algorithm includes

a heuristic for deciding whether scheduling an optional stall is

likely to be beneficial. The heuristic takes into account how

A B

E

G

4 4

C D

F

2 4

1 1

Def r1 Def r2 Def r3 Def r4

Use r1, r2

Def r5

Use r3, r4

Def r6

Use r5, r6

Def r7

(b) Pass 1

Ant 1

1: A

2: B

3: C

4: D

5: F

6: E

7: G

PRP = 4

Ant 2

1: C

2: D

3: F

4: A

5: B

6: E

7: G

PRP = 3

(a) DDG

(c) Pass 2

ILP-pass initial

1: C

2: D

3: stall

4: stall

5: stall

6: F

7: A

8: B

9: stall

10: stall

11: stall

12: E

13: G

PRP = 3

Ant 1

1: D

2: C

3: stall

4: stall

5: F

6: A

7: B

8: stall

9: stall

10: stall

11: E

12: G

PRP = 3

Ant 2

1: A

2: B

3: D

4: stall

5: stall

6: E

7: C

8: stall

9: F

10: G

PRP = 3

Fig. 1. Parallel ACO scheduling example

the PRP will be impacted by the ready instructions and the

instructions that will become ready after scheduling optional

stalls (semi-ready instructions). The heuristic also tracks the

number of optional stalls that have been added so far and

reduces the probability of scheduling an optional stall when

many optional stalls have been inserted already.

V. OPTIMIZING THE ACO ALGORITHM ON THE GPU

This section describes the techniques that we have de-

veloped to optimize the performance of our parallel ACO

algorithm on the GPU. As mentioned earlier, there is no

previous work on parallelizing an ACO algorithm for a multi-

objective optimization problem on the GPU. The two main

challenges involved in parallelizing an algorithm on the GPU

are memory optimizations, especially memory coalescing, and

thread divergence. Our approach to handling these challenges

is described in the next two subsections.

A. Memory Optimizations

Memory coalescing is a GPU-specific feature, which allows

for a better utilization of the GPU memory bandwidth. In

memory coalescing, multiple memory accesses are combined

439

into a single transaction. This is possible when multiple threads

within the same wavefront access consecutive locations in

memory. To maximize memory coalescing, we have changed

the memory layout of several data structures in the parallel code,

such that threads in a wavefront access consecutive locations

in the GPU memory during their execution. More specifically,

for the frequently accessed data members of C++ classes, we

replaced each data member with an array of members in which

each array element corresponds to a thread.

Dynamic memory allocation on the GPU is known to be

very slow [63]. Therefore, we avoided it by allocating and

initializing objects on the CPU and then copying them to the

GPU. In addition, we replaced linked lists with two-dimensional

arrays, in which each row corresponds to an element in the

list and each column corresponds to a thread.

This has multiple performance advantages. First, only one

dynamic allocation of a contiguous memory block is needed,

which significantly reduces the allocation time. Second, the

resulting access pattern tends to maximize memory coalescing,

because when multiple threads traverse their lists in parallel,

they are likely to access adjacent memory locations.

When the arrays are allocated on the CPU, they cannot be

resized dynamically on the GPU. Therefore, when a list is

replaced with an array, the size of that array must be an upper

bound (UB) on the expected list size. Clearly, a tighter UB

leads to more efficient memory usage and to faster allocation.

For example, a trivial but loose UB on the size of the ready

list is the total number of instructions.

A tighter UB on the ready-list size is the maximum number of

independent instructions in the DDG, because the instructions in

the ready list must be independent. We can compute an estimate

of the maximum number of independent instructions using

the transitive closure of the DDG, which must be computed

anyway for other purposes. The transitive closure indicates

for every pair of instructions x and y, whether x depends on

y, y depends on x or the two instructions are independent.

Given the transitive closure of the DDG, a tighter UB on the

ready list size is one plus the maximum number of independent

instructions that any instruction in the DDG has.

For example, in the DDG of Figure 1.a, the total number

of instructions, which is 7, is a loose UB on the ready list

size, as the ready list can never have all 7 instructions in it.

The transitive closure shows that the maximum number of

independent instructions that any instruction in the DDG has

is 4. For example, Instruction A is independent of Instructions

B, C, D and F. This leads to a tighter UB of 5 on the ready

list size.

To minimize memory allocation and transfer time, we batch

the allocation and the transfer by consolidating individual

variables into large arrays. With this consolidation, a single

memory allocation call and a single memory transfer call are

needed for each large array instead of making thousands of

calls to allocate and transfer individual variables.

B. Thread-Divergence Optimizations

Thread divergence is another important GPU-specific factor

that affects performance. Thread divergence occurs when

threads in the same wavefront follow different execution paths.

For example, in executing an if statement, some threads may

execute the if path while others execute the else path. Since

the threads in a wavefront are executed in lockstep, control

paths taken by the threads in a wavefront are traversed one at

a time. When one path is executed, threads that are not taking

that path stay idle but still occupy resources. Therefore, thread

divergence degrades performance and should be minimized.

As described in Section IV-B, the scheduling kernel consists

of three main stages: schedule construction, best schedule

selection, and the pheromone-table update. As explained below,

significant thread divergence is likely to happen only in the

schedule-construction stage.

Selecting the best schedule in each iteration is done using

parallel reduction, which may cause thread divergence, but

this divergence can be reduced by using an efficient reduction

kernel [64, Chapter 5.3]. Updating the pheromone table does

not cause much divergence, because each thread is assigned a

different column to update.

Schedule construction is the stage that is expected to have

significant thread divergence. As described in Section IV-A,

schedule construction of a single ant is performed by repeatedly

selecting the next instruction from the ant’s ready list.

An important cause of divergence in schedule construction is

that some ants select the next instruction based on exploitation,

while others select it based on exploration, and each of these

two selection schemes is implemented using a different formula.

To minimize the divergence caused by this, we perform the

randomized selection between exploration and exploitation at

the wavefront level rather than the thread level, that is, all the

threads within each wavefront select the next instruction based

on the same method. Of course, this does not mean that all

the threads within a wavefront will select the same instruction.

Experimentally, this technique gave a significant reduction in

divergence and consequently in scheduling time in the first

pass.

Another important cause of divergence in our ACO schedul-

ing algorithm is that the schedules explored in the second

pass generally have different numbers of stalls. For example,

the schedule constructed by Ant 1 in Figure 1.c has 5 stalls

and a total length of 12, while the schedule constructed by

Ant 2 has only 3 stalls with a total length of 10. In Cycle 3,

for example, Ant 1 schedules a stall, while Ant 2 schedules

Instruction D, and thus each ant performs different operations

in that cycle. More specifically, Ant 2, which schedules an

actual instruction must update the ready list by traversing the

successor list of Instruction D. This is a particularly challenging

cause of divergence that is specific to our latency-constrained

scheduling problem and is not an issue in other sequencing

problems, such as the TSP and the SOP.

The approach that we take to reducing the divergence caused

by the difference in schedule lengths among threads is unifying

the optional-stall insertion strategy within each wavefront. We

440

allow the insertion of optional stalls only in a fraction of

the wavefronts and disallow optional stalls in the rest of the

wavefronts. Experimentally, allowing only a quarter of the

wavefronts to insert optional stalls gave the best results.

Another optimization that we use to minimize the number

of cycles in which different threads perform different kinds

of operations is terminating all the threads within a wavefront

as soon as one thread completes constructing its schedule.

This technique takes advantage of the fact that in our ACO

algorithm, only the iteration winner updates the pheromone

table. If at least one thread completes constructing a schedule,

other threads won’t have a chance to produce the iteration

winner, because they will necessarily be using more cycles and

thus constructing longer schedules.

A third cause of divergence is that each ant has a different

ready list with a possibly different size. As a result, the threads

that have shorter ready lists to scan must wait for the threads

that have longer ready lists to scan. Furthermore, updating

the ready list after selecting the next instruction may also

cause divergence, as this update involves iterating through the

selected instruction’s list of successors to check if they have

become ready. Since different instructions may have different

numbers of successors, this is another cause of divergence.

Differences in ready-list and successor-list sizes make solving

a problem with precedence constraints on the GPU harder. In

the absence of precedence constraints, ready lists in all threads

will have exactly the same size, and no successor lists need to

be traversed.

Minimizing the differences in the ready list and the successor

list is particularly challenging, because the very purpose

of launching many ants in parallel is constructing different

schedules. When each ant makes different selections and

constructs a different schedule, more sub-spaces will be

explored, thus increasing the chances of finding a better final

solution. Naturally, these differences will cause the ready lists

and the successor lists to be different.

We have experimented with different techniques for minimiz-

ing the divergence that results from the differences in ready-list

sizes. We tried to unify the ready list sizes among the threads

within each wavefront by limiting the ready list size to the

minimum list size in any thread in that wavefront or to the

mid point between the minimum size and the maximum size,

but these attempts did not give better overall results. When

the ready list size in some threads is limited, the options to be

considered are limited. This won’t affect correctness, because

all options will eventually be considered by the end of the

schedule construction, but it may affect the quality of the

constructed schedule, because it may defer some good options

that must be considered early. Our experimentation was based

on the hope that although some good options may be considered

too late in some wavefronts, they will be considered early in

other wavefronts. However, the experimental results showed

that limiting the ready-list size does not give better overall

results.

Finally, in an attempt to minimize the differences in schedule

length among the threads within the same wavefront, we

experimented with using different guiding heuristics in different

groups of wavefronts. As explained earlier, the ACO search

is guided by common heuristics. Some heuristics minimize

the schedule length more aggressively than others [61]. More

aggressive ILP heuristics, such as the Critical-Path heuristic,

tend to produce shorter schedules. Using the same heuristic

within each wavefront and different heuristics in different

wavefronts results in a better exploration of the solution space

with smaller differences in behavior within the same wavefront.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

The sequential ACO algorithm and the proposed parallel

ACO algorithm were implemented in LLVM 15 and evaluated

using the rocPRIM benchmarks [28]. The tests were run on

a system with an AMD Ryzen Threadripper 1950X 16-Core

processor running at 3.4 GHz and an AMD Radeon VII GPU

running at 1.8 GHz. The ROCm version is 5.4.1, and the

operating system is Ubuntu 20.04.5 LTS.

In this evaluation, we use 180 blocks with 64 threads per

block, which gives a total of 11,520 threads. Each thread

simulates an ant. When the scheduling region is larger, more

iterations are needed to find a high-quality solution. Therefore,

we divided the scheduling regions into three categories based

on their sizes (the number of instructions in the region) and

used larger termination conditions for categories with larger

sizes. The categories used are [1-49], [50-99], and ≥ 100, and

the termination conditions are 1, 2, and 3, respectively.

TABLE 1
BENCHMARK STATISTICS

Stat Value

Number of benchmarks 341
Number of kernels 269

Number of scheduling regions 181,883
Number of scheduling regions processed by ACO in pass 1 1,734
Number of scheduling regions processed by ACO in pass 2 12,192

Avg. processed region size in pass 1 68.3
Avg. processed region size in pass 2 40.2
Max. processed region size in pass 1 1,176
Max. processed region size in pass 2 2,223

The proposed algorithm is evaluated by comparing its per-

formance to that of the AMD production scheduling algorithm

[65], which is a greedy algorithm that is built on the LLVM

generic scheduling algorithm. It extends the LLVM scheduler

to specifically model the AMD GPU, and it is well tuned

for ROCm. Therefore, it is a state-of-the-art scheduler for the

AMD GPU.

The rocPRIM benchmarks [28] used in our experiments

utilize the reusable rocPRIM library kernels to test their

performance. The rocPRIM kernels are used in the implemen-

tation of many important higher-level libraries, frameworks

and applications. So, significantly improving the performance

of some rocPRIM benchmarks indicates that our algorithm

can significantly improve the performance of a wide range of

applications.

441

Table 1 shows some statistics about the rocPRIM benchmarks.

We included only the benchmarks that are sensitive to schedul-

ing. Sensitivity was determined by applying the base LLVM

scheduling algorithm, the proposed parallel ACO algorithm

and the CP heuristic to each benchmark. If the coefficient of

variation for the three execution times was within 3%, the

benchmark was considered insensitive to scheduling.

As shown in the table, 341 scheduling-sensitive benchmarks

are included. These benchmarks use 269 kernels. Some kernels

are invoked by multiple benchmarks, but different benchmarks

may invoke the same kernel with different parameters. A total

of 181,883 scheduling regions were scheduled. In LLVM, a

scheduling region is a basic block or part of a basic block.

Each scheduling region is first scheduled using AMD’s

heuristic scheduler. The cost of the heuristic schedule is then

compared with the lower bound (LB). If the cost is equal to the

LB, the heuristic schedule is optimal and ACO is not needed. If

the cost of the heuristic schedule is greater than the LB, ACO

is invoked to search for a better schedule. The table shows that

ACO scheduling was applied to 1,734 regions in the first pass

and 12,192 regions in the second pass. The average region

size processed by ACO is 68.3 in the first pass and 40.2 in the

second pass. The largest region size processed is of size 1,176

in pass 1 and 2,223 in pass 2.

Every test in this evaluation was run five times and the

median was taken for each scheduling region (Tables 2, 3.a,

3.b, 4.a, 4.b, 6 and Figures 2, 3) or benchmark (Tables 5, 7

and Figure 4). All the results reported below are based on the

medians.

B. Effect of ACO

In this subsection, we show the gain that is achieved by using

the ACO scheduling algorithm relative to AMD’s scheduling

algorithm (base LLVM). The two metrics used in the evaluation

are the occupancy and the schedule length. Occupancy is

evaluated at the kernel level, while the schedule length

is evaluated at the scheduling-region level. The percentage

improvements reported here are based on computing the sum

of occupancies across all kernels or the sum of scheduling

lengths across all regions.

Ideally, if the termination conditions are the same for the

sequential and the parallel algorithms, both algorithms should

find the same solutions. Practically, however, the solutions will

not be exactly the same due to the randomness of the ACO

algorithm. On a sufficiently large data set, the differences in the

overall occupancy and schedule length between the sequential

and the parallel algorithms should be negligible.

The results in Table 2 show that the ACO algorithm

improves the overall occupancy by 0.66% and the overall

schedule length by 5.52% relative to the AMD algorithm. The

maximum percentage improvement on any region is 300%

in occupancy and 78.5% in schedule length. Overall, these

numbers show that the ACO-based algorithm gives significantly

better schedules than AMD’s heuristic scheduler. Note that

although the aggregate improvements are not high, large

improvements on individual hot regions can have a high impact

on the execution time as shown in Section VI-E.

TABLE 2
IMPROVEMENT OF ACO RELATIVE TO AMD SCHEDULER

Stat Value

Regions processed by ACO in pass 1 1,734
Regions processed by ACO in pass 2 12,192

Overall occupancy increase 0.66%
Max. occupancy increase in any kernel 300.00%

Overall schedule length reduction 5.52%
Max. schedule length reduction 78.52%

C. Effect of Parallelization

In this subsection, we show the speedup delivered by the

proposed parallel ACO algorithm relative to the sequential

ACO algorithm in the first pass (Table 3.a) and in the second

pass (Table 3.b). The speedup ratio is the ratio between the

scheduling time of the sequential algorithm run on the CPU and

the scheduling time of the parallel algorithm run on the GPU.

This ratio was computed only for comparable regions, which

are the regions that both algorithms took the same number of

iterations to schedule. Due to the randomness in ACO, each

algorithm may take a different number of iterations to solve

the same instance. The third row in each table shows the

geometric-mean speedup for each size range.

As expected, the parallel ACO algorithm runs significantly

faster than the sequential ACO algorithm. The speedup is

greater on larger regions. For example, in the first pass, the

geometric-mean speedup is 2.07 across the regions in the size

range [1-49], while it is 12.48 across the regions of size 100

or greater. This is also expected, because on smaller regions,

the benefit from parallelization may be over-weighed by the

overhead of launching a GPU kernel and copying data between

the CPU and the GPU.

TABLE 3.a
PARALLEL SPEEDUP IN THE FIRST PASS

Inst. count range 1-49 50-99 ≥ 100

Regions processed by ACO 728 643 363
Comparable regions 716 600 327

Geometric mean speedup 2.07 7.44 12.48
Max. Speedup 5.69 12.69 27.19
Min. Speedup 0.63 3.30 5.66

TABLE 3.b
PARALLEL SPEEDUP IN THE SECOND PASS

Inst. count range 1-49 50-99 ≥ 100

Regions processed by ACO 9,808 1,574 810
Comparable regions 9,613 1,354 436

Geometric mean speedup 1.99 4.80 7.55
Max. Speedup 8.25 13.03 17.37
Min. Speedup 0.45 1.08 4.10

The last two rows in each table show the maximum and

the minimum speedup on any region in each size range. The

442

1-3.9 4-6.9 7-9.9 10-12.9 ≥ 13

0

200

400

600

C
o

u
n

t
o

f
re

g
io

n
s

in
ra

n
g

e
Inst. Count 1-49

Inst. Count 50-99

Inst. Count ≥ 100

Fig. 2. Speedup distribution in the first pass

8,500

9,000

1-3.9 4-6.9 7-9.9 10-12.9 ≥ 13

0

200

400

600

800

C
o

u
n

t
o

f
re

g
io

n
s

in
ra

n
g

e

Inst. Count 1-49

Inst. Count 50-99

Inst. Count ≥ 100

Fig. 3. Speedup distribution in the second pass

maximum speedup on any region is 27.19. The minimum

speedup shows that for regions of size 50 or greater, every

region benefits from parallelization. The regions that do not

benefit from parallelization are the easier regions for which

the sequential algorithm finds quality solutions very quickly.

It is noted that the speedup ratios in the second pass are

significantly lower than the ratios in the first pass. This is

attributed to the fact that there is more thread divergence in the

second pass, due to the latency constraints that cause different

ants to construct schedules of different lengths as shown in

Figure 1.c. The techniques described in Section V-B reduce

the effect of thread divergence, but they don’t eliminate it.

Figures 2 and 3 show the distribution of the speedup ratios

for each region size range.

Next, we study the effect of the optimizations described

in Section V. Table 4.a shows the effect of the memory

optimizations described in Section V-A, and Table 4.b shows

the effect of the thread-divergence optimizations described in

Section V-B. The entries in these tables are the percentage

improvements in the parallel ACO scheduling time. Both the

overall improvements across all scheduling regions and the

maximum improvement on any region are shown for each pass.

The improvement from memory optimizations is very high

in both passes. The improvements from thread-divergence

optimizations are not as high as the improvements from

memory optimizations but are still quite significant, especially

on larger regions in the second pass. For the regions of size

100 instructions or greater, the overall improvement from

thread-divergence optimizations is 15.42%, and the maximum

improvement on any region is 101.40%. As explained in Section

V-B, there is more thread divergence in the second pass. The

improvement on larger regions is greater than the improvement

on smaller regions, because as the region size increases, a larger

percentage of the ACO scheduling time is actual computation

time on the GPU, as opposed to copying time.

TABLE 4.a
IMPROVEMENTS IN ACO TIME FROM MEMORY OPTIMIZATIONS

Inst. count range 1-49 50-99 ≥ 100

Pass 1 overall improvement 645% 1055% 897%
Pass 1 max. improvement 1163% 1592% 1929%

Pass 2 overall improvement 593% 994% 709%
Pass 2 max. improvement 2647% 1629% 3052%

TABLE 4.b
IMPROVEMENTS IN ACO TIME FROM DIVERGENCE OPTIMIZATIONS

Inst. count range 1-49 50-99 ≥ 100

Pass 1 overall improvement 0.68% 3.81% 7.00%
Pass 1 max. improvement 17.14% 15.84% 65.96%

Pass 2 overall improvement 3.78% 12.06% 15.42%
Pass 2 max. improvement 55.56% 71.53% 101.40%

D. Compile Times

Table 5 shows the total compile times for the rocPRIM

benchmarks using the base AMD scheduler, the sequential

ACO scheduler, and the parallel ACO scheduler. In practice,

ACO is a computationally expensive algorithmic technique that

should be applied selectively only when a significant benefit

is expected.
TABLE 5

TOTAL COMPILE TIMES

Scheduler Total Compile Time (seconds)

Base AMD 840
Sequential ACO 1225 (45.8%)

Parallel ACO 967 (15.1%)

As described earlier, a heuristic is applied first in each pass,

and the ACO scheduler is invoked only if the heuristic RP

(in the first pass) or schedule length (in the second pass) is

not at the LB. In addition to this natural filtering, we found

experimentally that the benefit from ACO in the second pass is

likely to be significant only when the gap between the heuristic

schedule length and the LB is greater than a certain threshold.

A small improvement in schedule length is unlikely to translate

into an improvement in execution time. As detailed in Section

VI-F, a threshold of 21 cycles gave the best execution-time

443

results. This filter limits the compile-time cost and minimizes

execution-time regressions that may result from negative side

effects on un-modeled factors.

Additionally, we found that in some cases, the ACO

scheduler may find a schedule with a better occupancy in

the first pass, but due to the stronger occupancy constraint in

the second pass, it finds a significantly long schedule. In such

cases, which don’t occur very often, reverting to the heuristic

schedule gives better execution-time results. To handle such

cases, we added a post-scheduling filter that compares the

occupancy and the schedule length of the final ACO schedule

with the heuristic occupancy and schedule length and selects

the schedule that achieves a better balance between occupancy

and ILP. This filter is parameterized and can be tuned to

achieve the best performance. Experimentally, we found that

if the ACO algorithm increases occupancy by 3 but degrades

the schedule length by more than 63 cycles, reverting to the

heuristic schedule gives the best execution-time results.

Table 5 shows that the total compile time of the rocPRIM

benchmarks using the base LLVM compiler with the AMD

scheduler is 840 seconds. When the sequential ACO scheduler

is used, the compile time increases by 45.8%. With the parallel

ACO scheduler, the increase in compile time relative to the base

LLVM compiler is 15.1%. So, scheduling on the GPU using the

parallel ACO algorithm reduces the total compile time by 21%

relative to scheduling on the CPU using the sequential ACO

algorithm. This result shows that parallelization on the GPU

makes using a computationally expensive scheduling algorithm

much more practical. In future work, we plan to work on further

reducing the compile time by exploring additional techniques,

such as scheduling multiple regions in parallel.

E. Execution-Time Results

To evaluate the execution-time performance, the rocPRIM

benchmarks were compiled with the proposed algorithm used

for scheduling (the modified build). The filtering described in

Section VI-D was applied. Each benchmark was run five times

using the modified build and five times using the base LLVM

compiler with the AMD scheduler, and the median throughput

was taken for each benchmark.

Figure 4 shows the execution-time results for the benchmarks

on which a significant difference was measured between the

median throughput of the proposed algorithm and that of the

AMD algorithm. A difference is significant if it is 1% or greater.

All significant differences were improvements. The maximum

regression was 0.7%. Regressions are caused by negative side

effects on un-modeled factors. An instruction scheduler models

register pressure and schedule length, but it does not model

other factors that affect performance, such as caching. Since

some factors are impossible to model accurately at compile

time, regressions are unavoidable but can be minimized with a

reasonable cost-benefit analysis.

The x-axis represents the benchmarks and the y-axis rep-

resents the percentage improvement relative to the AMD

scheduler. The maximum improvement is 74%. The last bar

shows that the geometric-mean improvement is 13.2%. The

bl
oc

k
sc

an
8

de
vi

ce
m

er
ge

2

bl
oc

k
hi

st
og

ra
m

1

bl
oc

k
ra

di
x

so
rt

2

de
vi

ce
se

gm
en

te
d

re
du

ce
3

de
vi

ce
m

er
ge

6

bl
oc

k
sc

an
12

de
vi

ce
m

em
or

y
26

de
vi

ce
m

er
ge

4

bl
oc

k
sc

an
7

de
vi

ce
m

er
ge

3

bl
oc

k
re

du
ce

12

bl
oc

k
sc

an
11

bl
oc

k
re

du
ce

13

bl
oc

k
sc

an
5

de
vi

ce
m

er
ge

5

de
vi

ce
m

er
ge

1

bl
oc

k
sc

an
6

de
vi

ce
se

gm
en

te
d

re
du

ce
2

de
vi

ce
se

gm
en

te
d

re
du

ce
1

0%

20%

40%

60%

80%

G
eo

m
et

ri
c

M
ea

n
Im

pr
ov

em
en

t

Fig. 4. Execution-time speedup of rocPRIM benchmarks

graph also shows that 20 benchmarks were improved by 5% or

greater and 11 benchmarks were improved by 10% or greater.

F. Experimenting with Design Parameters

The parameters used to generate the results reported in the

previous subsections were chosen based on experimentation. In

this subsection, we show the results of our experimentation with

two design parameters, namely the percentage of wavefronts

inserting optional stalls (Table 6) and the cycle threshold used

to filter out unpromising scheduling regions (Table 7).

Table 6 shows the percentage increase in ACO scheduling

time when the percentage of wavefronts inserting optional stalls

is increased for the regions of size 100 or greater. The baseline

is zero wavefronts inserting optional stalls. The table also shows

the improvement in schedule length that is achieved with each

percentage of wavefronts relative to 0%. When the percentage

of wavefronts inserting optional stalls is increased, a better

schedule length may be achieved, because considering optional

stalls increases the chance of meeting the target occupancy. If

the target occupancy is not met, the scheduler falls back to the

second pass’s input schedule, which can be quite long.

The table shows that the improvement in schedule length

comes at the cost of increasing the scheduling time. We

chose 25% because it gives the best balance between the

scheduling time and the quality of the schedule. Note that

when zero wavefronts consider inserting optional stalls, it will

be impossible to find an optimal schedule for some regions.

Table 7 shows the execution-time statistics using different

settings of the cycle threshold described in Section VI-D. Recall

that if the difference between the length of the input schedule

and the LB is less than the cycle threshold, the region is filtered

444

TABLE 6
EXPERIMENTATION WITH OPTIONAL STALLS

% Blocks inserting optional stalls 25% 50% 75%

% Increase in ACO Time 8.65% 12.30% 20.28%
% Improvement in schedule length 0.27% 0.30% 0.95%

Max. % improvement in schedule length 15.75% 15.75% 23.58%

out. The results in the table show that increasing the cycle

threshold eliminates significant regressions, and that a cycle

threshold of 21 gives the best results.

TABLE 7
EXPERIMENTATION WITH CYCLE-BASED FILTER

Cycles 5 10 15 20 21 25

Imps. ≥ 3% 18 20 20 21 20 20
Imps. ≥ 5% 17 20 20 24 24 24

Imps. ≥ 10% 9 10 11 9 11 11
Regs. ≥ 3% 4 3 1 1 0 0
Regs. ≥ 5% 4 3 1 1 0 0

Regs. ≥ 10% 3 3 1 1 0 0
Max. Reg. 14.5% 14.5% 10.5% 10.5% 0.7% 1.3%

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we show that the GPU can be used to

parallelize a compute-intensive compiler optimization, which is

ACO-based instruction scheduling. Efficient parallelization is

achieved using a number of techniques for improving memory

performance and reducing thread divergence. Our work is the

first successful attempt to parallelize a compiler optimization

on the GPU and achieve significant improvements in execution

speed with a reasonable increase in compile time.

Our experimental evaluation shows that ACO-based schedul-

ing can be performed up to 27 times faster on the GPU, and

this leads to reducing the total compile time of rocPRIM by

21% relative to sequential ACO scheduling on the CPU.

In future work, we will continue to work on optimizing the

performance of the proposed algorithm, and we will work on

maximizing the utilization of the GPU by scheduling multiple

regions in parallel.

ACKNOWLEDGEMENTS

This work was supported in part by the US National Science

Foundation (NSF) through Award 1911235. The first and

second authors were supported by a Progress-to-Promotion

award from the Provost office at California State University,

Sacramento. The authors thank the GPU-compute compiler

team at Advanced Micro Devices (AMD) for donating the

machine that was used to generate the experimental results. We

also thank Jeffrey Byrnes for the help he provided on setting up

the benchmarks and thank Patrick Brannan and Lynn Koropp

for the technical support that they provided. Finally, we thank

the anonymous reviewers for their constructive comments and

suggestions that led to improving the final paper.

APPENDIX

A. Abstract

The artifact contains the source code for an instruction

scheduling compiler pass built in the AMDGPU backend of

LLVM. It also contains a Docker image which has LLVM with

the instruction scheduling pass built on Ubuntu 20.04. Users

can replicate the compile-time and execution-time experiments

described in the paper with the Docker image. We tried to

make running the experiments as convenient as possible. New

benchmarks can be added and the settings can be adjusted if

the user wishes to perform further experiments.

B. Artifact Checklist (Meta-Information)

• Algorithm: Parallel Ant Colony Optimization
• Run-time environment: ROCm kernel-mode drivers and

Docker.
• Hardware: An AMD GPU supported by the ROCm software

stack.
• Output: Spreadsheets of run-time benchmark throughputs and

compile-time metrics.
• How much disk space required (approximately)?: 20 GB.
• How much time is needed to prepare workflow (approxi-

mately)?: 1 hour.
• How much time is needed to complete experiments (approx-

imately)?: 3 hours.

C. Description

1) How Delivered: The artifact, containing the source code, is
available on GitHub at
https://github.com/CSUS-LLVM/OptSched/tree/CGO24.
However, it is recommended to download the ”docker” directory
separately from
https://github.com/CSUS-LLVM/OptSched/tree/CGO24/docker.
The Docker image will download and build the compiler pass from
the source automatically.

2) Hardware Dependencies: The results presented in this paper
were produced using an AMD Radeon VII GPU, which is a Vega 20
GPU. Since instruction scheduling is a hardware-dependent compiler
optimization, some experimental results may vary significantly when
the experiments are run on different hardware.

D. Installation

Building the included Docker image will collect all the required
user-space dependencies, compile LLVM with the Parallel ACO
compiler pass, and download the rocPRIM benchmarks used in the
paper.

To build the Docker image, download the ”docker” directory from
the GitHub repository and use the ”docker build” command. The
build command must be supplied with an argument indicating which
AMD GPU targets to build for. Assuming the ”docker” directory is
in the current working directory, and the user wants to build for the
”gfx906” architecture, the build command would be
docker build --build-arg="amdgpu_arch=’gfx906’

" docker

E. Experiment Workflow

A user wishing to conduct new experiments may wish to adjust the
configuration files located in ˜/.optsched-cfg. In the included
Docker image, all the default settings match those used to generate
the results in Tables 1-3.b and Figures 2-4.

A user seeking to replicate the results presented in the paper will
also need to gather baseline results using AMD’s stock compiler. Set
”ACO BEFORE ENUM” in sched.ini to ”NO” for these baseline
experiments. With this setting, the Parallel ACO scheduler will not

445

https://github.com/CSUS-LLVM/OptSched/tree/CGO24
https://github.com/CSUS-LLVM/OptSched/tree/CGO24/docker

do any scheduling, but the compile-time metrics will still be reported
in a format that the provided scripts can parse.

1) Compile-Time Experiments: Compile-time experiments are
performed by building the rocPRIM library with the parallel ACO
instruction scheduling pass and collecting the printed output, which
contains data on various compile-time metrics.

The rocPRIM source is already downloaded in the included Docker
image. It can be found at

˜/aco/benchmarks/rocPRIM.
To build rocPRIM with parallel ACO, make a new directory and run
the following commands from that directory

CXX=hipcc cmake -DBUILD_BENCHMARK=ON

-DAMDGPU_TARGETS="$AMDGPU_ARCH"

˜/aco/benchmarks/rocPRIM/

make |& tee build.log

This will build rocPRIM and place the parallel ACO logs in
build.log. The following command will convert the output compile-
time metrics into an Excel spreadsheet named ”out.xlsx”.

extractOptSchedData.py build.log out

2) Execution-Time Experiments: Execution-time experiments
are performed by running the rocPRIM benchmarks produced from
building rocPRIM with the parallel ACO scheduler and measuring
their throughput. A script has been provided to run them automatically.
The following command will replicate the execution-time experiment
that produced the results in Figure 4:

runPrimTests.py --benchpath

</path/to/benchmarks> --testpath

˜/aco/util/testSets/primSensitiveTests.txt

--repetitions 5 --output results.csv

Each benchmark listed in ”primSensitiveTests.txt” will be run 5
times, and the median throughput in GB/s for each benchmark will
be reported in results.csv.

F. Evaluation and Expected Result

After collecting the compile-time and execution-time results for
both the baseline AMD and the parallel ACO builds, the results
spreadsheets can be used to compare their performance.

The parallel-ACO throughput is compared with the base-AMD
throughput for each benchmark. The performance improvements of
parallel ACO relative to base AMD should be as shown in Figure 4.

REFERENCES

[1] K. Cooper and L. Torczon, Engineering a compiler, 2nd ed. Morgan
Kaufmann, 2011.

[2] C. Kessler, “Scheduling expression DAGs for minimal register need,”
Computer Languages, vol. 24, no. 1, pp. 33–53, 1998.

[3] A. Malik, “Constraint programming techniques for optimal instruction
scheduling,” Ph.D. dissertation, University of Waterloo, 2008.

[4] G. Barany and A. Krall, “Optimal and heuristic global code motion for
minimal spilling,” in International Conference on Compiler Construction,
2013, pp. 21–40.

[5] L. Domagała, D. van Amstel, F. Rastello, and P. Sadayappan, “Register
allocation and promotion through combined instruction scheduling and
loop unrolling,” in International Conference on Compiler Construction,
2016, p. 143–151.

[6] R. Lozano, “Constraint-based register allocation and instruction schedul-
ing,” Ph.D. dissertation, KTH Royal Institute of Technology, 2018.

[7] R. C. Lozano, M. Carlsson, G. Blindell, and C. Schulte, “Combina-
torial register allocation and instruction scheduling,” ACM Trans. on

Programming Languages and Systems, vol. 41, no. 3, 2019.
[8] G. Shobaki, M. Shawabkeh, and N. Rmaileh, “Preallocation instruction

scheduling with register pressure minimization using a combinatorial
optimization approach,” ACM Trans. Archit. Code Optim., vol. 10, no. 3,
2013.

[9] G. Shobaki, A. Kerbow, C. Pulido, and W. Dobson, “Exploring an alter-
native cost function for combinatorial register-pressure-aware instruction
scheduling,” ACM Trans. Archit. Code Optim., vol. 16, no. 1, 2019.

[10] G. Shobaki, A. Kerbow, and S. Mekhanoshin, “Optimizing occupancy
and ILP on the GPU using a combinatorial approach,” in ACM/IEEE

International Symposium on Code Generation and Optimization, 2020,
p. 133–144.

[11] G. Shobaki, V. Gordon, P. McHugh, T. Dubois, and A. Kerbow, “Register-
pressure-aware instruction scheduling using Ant-Colony Optimization,”
ACM Trans. Archit. Code Optim., vol. 19, no. 2, 2022.

[12] M. Dorigo and T. Stützle, Ant Colony Optimization. MIT Press, 2004.

[13] P. S. Rawat, F. Rastello, A. Sukumaran-Rajam, L.-N. Pouchet, A. Rountev,
and P. Sadayappan, “Register optimizations for stencils on GPUs,” in
ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, 2018, p. 168–182.

[14] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant System: Optimization by
a colony of cooperating agents,” IEEE Trans. Syst., Man, and Cybern. -

Part B, vol. 26, no. 1, pp. 29–41, 1996.

[15] L. Gambardella and M. Dorigo, “An Ant Colony System hybridized with
a new local search for the Sequential Ordering Problem,” INFORMS J.

Comput., vol. 12, no. 3, pp. 237–255, 2000.

[16] L. Escudero, “An inexact algorithm for the Sequential Ordering Problem,”
European Journal of Operational Research, vol. 37, no. 2, pp. 236–249,
1988.

[17] J. Ning, C. Zhang, P. Sun, and Y. Feng, “Comparative study of Ant
Colony Algorithms for multi-objective optimization,” Information, vol. 10,
no. 1, 2019.

[18] L. Gambardella, E. Taillard, and G. Agazzi, “MACS-VRPTW: A multiple
Ant Colony System for vehicle routing problems with time windows,”
in New Ideas in Optimization, 1999, p. 63–76.

[19] D. Skillicorn and D. Barnard, “Compiling in parallel,” Journal of Parallel

and Distributed Computing, vol. 17, no. 4, pp. 337–352, 1993.

[20] M. Mendez-Lojo, M. Burtscher, and K. Pingali, “A GPU implementation
of inclusion-based points-to analysis,” in Proceedings of the 17th

ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP), 2012, p. 107–116.

[21] Y. Su, D. Ye, and J. Xue, “Accelerating inclusion-based pointer analysis
on heterogeneous CPU-GPU systems,” in 20th Annual International

Conference on High Performance Computing, 2013, pp. 149–158.

[22] R. Nasre, “Time- and space-efficient flow-sensitive points-to analysis,”
ACM Trans. Archit. Code Optim., vol. 10, no. 4, 2013.

[23] T. Blaß and M. Philippsen, “GPU-accelerated fixpoint algorithms for
faster compiler analyses,” in Proceedings of the 28th International

Conference on Compiler Construction, 2019, p. 122–134.

[24] T. Prabhu, S. Ramalingam, M. Might, and M. Hall, “EigenCFA:
Accelerating flow analysis with GPUs,” in Proceedings of the 38th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL), 2011, p. 511–522.

[25] Z. Zuo, K. Wang, A. Hussain, A. Sani, Y. Zhang, S. Lu, W. Dou, L. Wang,
X. Li, C. Wang, and G. Xu, “Systemizing interprocedural static analysis
of large-scale systems code with Graspan,” ACM Trans. Comput. Syst.,
vol. 38, no. 1–2, 2021.

[26] Z. Zheng, X. Shi, L. He, H. Jin, S. Wei, H. Dai, and X. Peng, “Feluca:
A two-stage graph coloring algorithm with color-centric paradigm on
GPU,” IEEE Transactions on Parallel and Distributed Systems, vol. 32,
no. 1, pp. 160–173, 2021.

[27] M. Osama, M. Truong, C. Yang, A. Buluç, and J. Owens, “Graph coloring
on the GPU,” in IEEE International Parallel and Distributed Processing

Symposium Workshops (IPDPSW), 2019, pp. 231–240.

[28] AMD, “rocPRIM documentation,” . [Online]. Available: https:
//rocmdocs.amd.com/projects/rocPRIM/en/latest/index.html

[29] NVIDIA, “GPU-accelerated applications,” . [Online]. Available:
https://www.nvidia.com/en-us/gpu-accelerated-applications

[30] AMD, “HIP programming guide v5.4,” . [Online]. Avail-
able: https://docs.amd.com/bundle/HIP-Programming-Guide-v5.4/page/
Introduction{ }to{ }HIP{ }Programming{ }Guide.html

[31] M. Pedemonte, S. Nesmachnow, and H. Cancela, “A survey on parallel
Ant Colony Optimization,” Applied Soft Computing, vol. 11, no. 8, pp.
5181–5197, 2011.

[32] M. Randall and A. Lewis, “A parallel implementation of Ant Colony
Optimization,” Journal of Parallel and Distributed Computing, vol. 62,
no. 9, pp. 1421–1432, 2002.

[33] S. Janson, D. Merkle, and M. Middendorf, “Parallel Ant Colony
algorithms,” in Parallel Metaheuristics, 2019, pp. 171–201.

446

https://rocmdocs.amd.com/projects/rocPRIM/en/latest/index.html
https://rocmdocs.amd.com/projects/rocPRIM/en/latest/index.html
https://www.nvidia.com/en-us/gpu-accelerated-applications
https://docs.amd.com/bundle/HIP-Programming-Guide-v5.4/page/Introduction{_}to{_}HIP{_}Programming{_}Guide.html
https://docs.amd.com/bundle/HIP-Programming-Guide-v5.4/page/Introduction{_}to{_}HIP{_}Programming{_}Guide.html

[34] R. Skinderowicz, “The GPU-based parallel Ant Colony System,” J.

Parallel Distributed Comput., vol. 98, pp. 48–60, 2016.
[35] J. Peake, M. Amos, P. Yiapanis, and H. Lloyd, “Vectorized candidate

set selection for parallel Ant Colony Optimization,” in Genetic and

Evolutionary Computation Conference (GECCO), 2018, pp. 1300–1306.
[36] J. Cecilia and J. Garcı́a, “Re-engineering the Ant Colony Optimization

for CMP architectures,” J. Supercomput., vol. 76, p. 4581–4602, 2020.
[37] J. Cecilia, J. Garcı́a, A. Nisbet, M. Amos, and M. Ujaldón, “Enhancing

data parallelism for Ant Colony Optimization on GPUs,” Journal of

Parallel and Distributed Computing, vol. 73, no. 1, pp. 42–51, 2013.
[38] J. Cecilia, A. Llanes, J. Abellán, J. Gómez-Luna, L. Chang, and W. Hwu,

“High-throughput Ant Colony Optimization on Graphics Processing Units,”
Journal of Parallel and Distributed Computing, vol. 113, pp. 261–274,
2018.

[39] G. Guerrero, J. Cecilia, A. Llanes, J. Garcı́a, M. Amos, and M. Ujaldón,
“Comparative evaluation of platforms for parallel Ant Colony Optimiza-
tion,” J. Supercomput., vol. 69, p. 318–329, 2014.

[40] L. Dawson and I. Stewart, “Improving Ant Colony Optimization perfor-
mance on the GPU using CUDA,” in IEEE Congress on Evolutionary

Computation, 2013, pp. 1901–1908.
[41] A. Uchida, Y. Ito, and K. Nakano, “An efficient GPU implementation

of Ant Colony Optimization for the Traveling Salesman Problem,” in
International Conference on Networking and Computing (ICNC), 2012,
pp. 94–102.

[42] R. Skinderowicz, “Implementing a GPU-based parallel MAX–MIN Ant
System,” Future Generation Computer Systems, vol. 106, pp. 277–295,
2020.

[43] B. Menezes, H. Kuchen, H. A. Neto, and F. de Lima Neto, “Parallelization
strategies for GPU-based Ant Colony Optimization solving the Traveling
Salesman Problem,” in IEEE Congress on Evolutionary Computation

(CEC), 2019, pp. 3094–3101.
[44] A. Delévacq, P. Delisle, M. Gravel, and M. Krajecki, “Parallel Ant

Colony Optimization on Graphics Processing Units,” Journal of Parallel

and Distributed Computing, vol. 73, no. 1, pp. 52–61, 2013.
[45] Y. Zhou, F. He, and Y. Qiu, “Dynamic strategy based parallel ant colony

optimization on GPUs for TSPs.” Science China Information Sciences,
vol. 60, no. 068102, 2017.

[46] H. Zhi-bin, F. Guang-Tao, F. Tian-Hao, D. Dan-Yang, B. Peng, and
X. Chen, “High performance ant colony system based on GPU warp
specialization with a static–dynamic balanced candidate set strategy,”
Future Generation Computer Systems, vol. 125, pp. 136–150, 2021.

[47] J. Fu, L. Lei, and G. Zhou, “A parallel Ant Colony Optimization algorithm
with GPU-acceleration based on All-In-Roulette selection,” in Third

International Workshop on Advanced Computational Intelligence, 2010,
pp. 260–264.

[48] D. E. Baz, M. Hifi, L. Wu, and X. Shi, “A parallel Ant Colony
Optimization for the Maximum-weight Clique Problem,” in IEEE

International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), 2016, pp. 796–800.
[49] S. Tsutsui and N. Fujimoto, “A comparative study of synchronization of

parallel ACO on multi-core processor,” in Companion Publication of Ge-

netic and Evolutionary Computation Conference (GECCO Companion),
2015, pp. 777–778.

[50] A. Borisenko and S. Gorlatch, “Optimizing a GPU-parallelized Ant
Colony Metaheuristic by parameter tuning,” in Parallel Computing

Technologies (PaCT), ser. Lecture Notes in Computer Science, 2019, vol.
11657, pp. 151–165.

[51] D. Thiruvady, A. Ernst, and G. Singh, “Parallel Ant Colony Optimization
for resource constrained job scheduling,” Annals of Operations Research,
vol. 242, no. 2, pp. 355–372, 2016.

[52] I. Dzalbs and T. Kalganova, “Accelerating supply chains with Ant Colony
Optimization across a range of hardware solutions,” Comput. Ind. Eng.,
vol. 147, 2020.

[53] S. Mane, P. Lokare, and H. Gaikwad, “Overview and applications
of GPGPU based parallel ant colony optimization,” in International

Conference on Advances in Computing and Information Technology

(ICACIT), 2014.
[54] C. Lintzmayer, M. Mulati, and A. da Silva, “Register allocation with

graph coloring by Ant Colony Optimization,” in International Conference

of the Chilean Computer Science Society, 2011, pp. 247–255.
[55] J. Falcón-Cardona, G. Leguizamón, C. Coello, and M. Tapia, “Multi-

objective Ant Colony Optimization: An updated review of approaches
and applications,” in Intelligent Systems Reference Library (ISRL) book

series, 2022, vol. 218.
[56] A. Mora, P. Garcı́a-Sánchez, J. Merelo, and P. Castillo, “Pareto-based

multi-colony multi-objective Ant Colony Optimization algorithms: an
island model proposal,” in Soft Comput, 2013, vol. 17, p. 1175–1207.

[57] A. Cano, J. Olmo, and S. Ventura, “Parallel multi-objective Ant
Programming for classification using GPUs,” Parallel and Distributed

Computing, vol. 73, no. 6, pp. 713–728, 2013.
[58] J. Olmo, J. Romero, and S. Ventura, “Classification rule mining using

Ant Programming guided by grammar with multiple Pareto fronts,” in
Soft Comput, 2012, vol. 16, pp. 2143–2163.

[59] L. Gambardella, R. Montemanni, and D. Weyland, “An enhanced Ant
Colony System for the Sequential Ordering Problem,” in Operations

Research Proceedings 2011, 2012, pp. 355–360.
[60] R. Skinderowicz, “An improved Ant Colony System for the Sequential

Ordering Problem,” Computers & Operations Research, vol. 86, pp. 1–17,
2017.

[61] G. Shobaki, L. Sakka, N. A. Rmaileh, and H. Al-Hamash, “Experimental
evaluation of various register-pressure-reduction heuristics,” Softw. Pract.

Exper., vol. 45, no. 11, p. 1497–1517, 2015.
[62] M. Harris, “Optimizing parallel reduction in CUDA,” . [Online]. Available:

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
[63] M. Steinberger, M. Kenzel, B. Kainz, and D. Schmalstieg, “ScatterAl-

loc: Massively parallel dynamic memory allocation for the GPU,” in
Innovative Parallel Computing (InPar), 2012, pp. 1–10.

[64] D. Kirk and W. Hwu, Programming Massively Parallel Processors: A

Hands-on Approach, 3rd ed. Morgan Kaufmann, 2017.
[65] AMD, “Amd. 2019. gcn max occupancy sched-

uler,” . [Online]. Available: http://llvm.org/doxygen/classllvm 1
1GCNMaxOccupancySchedStrategy.html

447

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://llvm.org/doxygen/classllvm_1_1GCNMaxOccupancySchedStrategy.html
http://llvm.org/doxygen/classllvm_1_1GCNMaxOccupancySchedStrategy.html

	Introduction
	Background
	Problem Definition
	GPU Computing

	Previous Work
	Algorithm Description
	Sequential Algorithm
	Parallelization on the GPU
	Example

	Optimizing the ACO Algorithm on the GPU
	Memory Optimizations
	Thread-Divergence Optimizations

	Experimental Results
	Experimental Setup
	Effect of ACO
	Effect of Parallelization
	Compile Times
	Execution-Time Results
	Experimenting with Design Parameters

	Conclusions and Future Work
	Appendix
	Abstract
	Artifact Checklist (Meta-Information)
	Description
	How Delivered
	Hardware Dependencies

	Installation
	Experiment Workflow
	Compile-Time Experiments
	Execution-Time Experiments

	Evaluation and Expected Result

	References

