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Abstract 
 

The RoadViewTM project at the Advanced Highway 
Maintenance Construction Technology (AHMCT) 
research center seeks to improve the safety and 
efficiency of snow removal by providing information to 
the driver using an in-vehicle computer.  The calculation 
of future vehicle lateral position is achieved with 
cooperative modular artificial neural networks, trained 
using data generated from a known, but somewhat slow, 
mathematical model. The performance of a single 
monolithic neural network is compared against a 
cooperative modular neural network trained with 
uniform matching criteria. Additionally, an algorithm to 
calculate a best achievable matching criterion for each 
network is described and the best achievable matching 
criterion is combined with a modular network 
partitioning scheme. The use of cooperative modular 
artificial neural networks reduces mean error between 
46% and 55% compared with the single network. 

 
1. Introduction 
 
1.1 RoadViewTM SnowPlow Application 
 
 The Advanced Snowplow System (RoadView) is an 
intelligent vehicle research project at the Advanced 
Highway Maintenance Construction Technology 
(AHMCT) research center. The RoadView project seeks 
to improve the safety and efficiency of snow removal by 
providing information to the driver. The system consists 
of an in-vehicle computer connected to an LCD screen 
used by the driver. The first generation system was 
installed in a CalTrans 10 wheel snowplow [1]. The in-
vehicle computer is connected to various sensors—a 
digital compass, GPS receiver, steering wheel position 
encoder, magnetometer, and are integrated to provide 
driver steering guidance using auditory and visual 
feedback. 

In low visibility conditions, steering guidance is 
important for lane keeping, improves driver efficiency 
and enables the snowplow to hug road edges, guardrails, 
and other obstacles while simultaneously reducing 
snowplow and obstacle contact. 

Figure 1 shows the RoadView display as seen by the 
driver. The solid rectangle in the lower left of the display 
represents the current vehicle position within the lane. 
The two white vertical lines represent lane edges.  The 
bright square near the top of the display represents the 
future (predicted) position of the vehicle. Current and 
future lane position is shown in figure 2. 
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Figure 1 — RoadView Application Display 
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Figure 2 — Future and Current 
Vehicle Lateral Position 
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Future vehicle position is calculated using a system 
which performs a complex set of nonlinear computations 
[4] - referred to as the oracle. The oracle has seven 
inputs: vehicle speed, road curvature radius, heading, 
lateral offset, steering angle, yaw rate, and a road shape 
indicator.  The driver’s task is to keep the future position 
indicator in the center of the lane.  Turning the steering 
wheel moves the indicator to the left or the right.  As 
long as the driver keeps the indicator near the center of 
the lane within the display, the vehicle will remain in the 
center of the lane. 

1.2 Problem Description 

In the present RoadView system, the screen is 
updated 10 times a second. The oracle is computationally 
intensive relative to RoadView’s calculation cycle time 
budget.  Ideally, a low power embedded processor would 
be sufficient to run the RoadView application. The goal 
of this project is to replicate the effective computation of 
the oracle with faster speed, by using a neural network. 

Feedforward multilayer perceptron neural networks 
are function approximators and can be trained to 
represent nearly any function [7].  The proposed solution 
uses multiple cooperative modular neural networks to 
calculate future vehicle lateral position.  Each of these 
modular networks is responsible for a decomposed 
portion of the input domain. The input domain contains 
five inputs (see table 1) and is disjointedly partitioned. 
Each modular neural network is independently trained 
using a single partition. Together, all of the 
independently trained modular neural networks provide a 
solution for the full input domain. 

1.3 Modular Neural Networks 

In the 1990s researchers used multiple network 
solutions to solve a variety of problems. It is useful to 
distinguish between networks arranged in ensemble and 
modular combinations.  Each individual network in an 
ensemble works to solve the entire problem.  Different 
networks in the ensemble might use different solution 
strategies, methods, or different input data (e.g. data 
filtered differently). Results from multiple ensemble 
networks are combined using averaging and other 
statistical methods.  Benefits of using multiple ensemble 
networks are better generalization and increased 
reliability through redundancy [10]. By contrast, 
modularity uses decomposition for problem solving 
[6][8].  Each network is responsible for solving a portion 
of the decomposed problem.  That is, each network is a 
specialist at solving a particular portion of the problem. 

Module results may be combined cooperatively, 
competitively, supervisory, or sequentially [10]. A 
cooperative combination uses unqualified results from 

each module. Advantages of using a modular approach 
include superior solutions and the ability to solve 
otherwise intractable problems [2].  Another useful 
distinction in multi-network solutions is between 
decomposition and replication. Modular systems use 
decomposition and ensembles do not.  Both ensemble 
and modular systems may use replication.  This project 
uses a cooperative modular arrangement.  Each modular 
network contributes equally to the final solution.  All 
modules use the same network structure (replication). 

Lideng [8] used multiple neural networks to model 
the viscosity of an atmospheric column with 6 inputs and 
1 output. Fu [3] used a divide and conquer scheme to 
generate a self-growing collection of modular networks, 
by recursively dividing into 2 partitions until the entire 
domain was well learned.  Haecker [5] asserts that neural 
networks are appropriate for control applications.  

 
2. Neural Network Solution 

Many different models of neurons and networks are 
available [9]. We use feedforward networks with a single 
hidden layer, and backpropogation training. 

2.1 Single Neural Network Solution 
We first used a monolithic feedforward network 

with 1 hidden layer and backpropagation training.  There 
were 5 inputs and 1 output. The oracle requires seven 
inputs. The first five of these inputs were used as neural 
network inputs (see table 1).  The 6th input (current 
vehicle yaw rate) and 7th input (road shape indicator) 
were not used.  A straight road was approximated with a 
very large roadway radius. 

The range for each neural network input is shown in 
table 1 below. 

 
 
�

Input  Input 
Description Unit Range Oracle’s 

Range 

1 Vehicle 
heading  Degrees -90 to 90 -90 to 90 

2 
Vehicle 
lateral 
position  

Meters -4 to 4 -4 to 4 

3 
Steering 
wheel angle 
relative 

Degrees -270 to 
270 

-2,160, 
+2,160 

4 
Radius of 
road 
curvature 

Meters (-1000,-50) 
(+50,1000) 

-10000, 
10000 

5 Vehicle 
speed Miles/hr 0 to 36 >= 0 

Table 1 — Future Lateral Offset 
Calculation Inputs 
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To generate network training cases each input was 
evenly divided into 4 data points. For example, vehicle 
speed ranges from 0 to 36 mph, so 4 training values for 
speed were generated: 0, 12, 24, and 36.  The total 
number of training cases was therefore 1024 (45), which 
covered the input domain. A single training case was 
considered solved if the output calculated by the oracle 
and neural network were within a specified tolerance of 
each other, referred to here as the criterion value. 

2.2 Modular Neural Network Solution 
In a modular network, each network is solely 

responsible for a particular portion of the input space.  
The complete problem is solved by using all of the 
modular networks’ outputs, as shown in figure 3.   
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Figure 3 — Modular Neural Network Schema 
 
The first step in setting up the scheme in figure 6 is 

to partition the problem input domain. Input variables are 
partitioned into equal sized intervals. For example, input 
#1 (vehicle speed) ranges between 0 and 36.  It was 
divided into 4 uniform intervals: [0,9], [9,18], [18,27], 
and [27,36]. Each network input was similarly divided. 
After the input domain is partitioned, the task of 
associating an arbitrary set of inputs with the appropriate 
modular network is performed, shown by the gray box in 
figure 3. 

2.3 Modular Neural Networks with Best 
Achievable Criterion 

The modular approach uses multiple independently 
trained neural networks. Ideally, network training 
maximizes accuracy, which implies a need to minimize 
each network’s matching criterion.  If a network’s 
matching criterion is too small, the backpropagation 
training algorithm will not converge.  If it is too large, 
the resulting network loses accuracy.  To determine the 
best achievable network criterion, the algorithm shown 
in figures 4 and 5 is used. 
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Figure 4 — Best Achievable Criterion Algorithm 

 
 
 
The modular partitioning method shown in Figure 5 

was used to solve the 5 input future vehicle lateral offset 
problem.  In steps 1-4, each input is separately 
partitioned and tested.  In steps 5-6, the best partitions 
for each input are combined.  In steps 7 and 8 a 
tournament is used to select the final best combination. 
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Step Action 
1 Select the 1st input out of N inputs. 

2 
Partition selected input into 1..P 
partitions, keeping remaining inputs 
unpartitioned. 

3 For each of the partition sets in step 2, 
calculate the mean error for each.   

4 Perform steps 2 and 3 for all remaining 
inputs.  Go to step 5 when done. 

5  

For each input, note the 2 (B=2) 
scenarios with the lowest mean error.  
Note the corresponding number of 
partitions for each input. 

6 

Create a scenario for each combination 
(cross product) of the partitions for each 
input in step 5.  There should be B�N 
scenarios. 

7 Test the scenarios created in step 6. 

8 Choose the scenario from step 7 with the 
lowest mean error. 

Figure 5 — Modular Partitioning Method 
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2.4 Scenario Determination Using the 
Partitioning Method 

The input domain was partitioned using the method 
discussed in section 2.3.  Each of the 5 inputs (N=5) was 
partitioned into 1 to 8 (P=3) partitions.  The number of 
partitions for the best two scenarios (B=2) for each input 
were retained.  This resulted in 32 (25) scenarios.  These 
32 scenarios were tested and the one with the lowest 
mean error was selected as the best solution. 

 
 

3. Results 
3.1 Experimental Method 

Each input was divided into 17 test points, resulting 
in 1,419,857 (175) test cases.  An error value is 
calculated for each test case as the absolute difference 
between the value calculated by the oracle and the neural 
network output. A number of metrics were then used 
during testing to characterize the accuracy of solutions.  
These are discussed below: 

• Mean error 

• Standard deviation of error 

• % of cases with error 61cm or less. Measures the 
proportion of test cases that have high accuracy. 

• Percent of test cases with error of 3 meters or more. 
Measures the proportion of cases with poor accuracy. 

• Mean criterion value. a value ranging from 0 to 1 that 
is both a neural network training parameter and an 
indicator of network uniformity and accuracy. 

• Maximum error: Used to evaluate the severity of the 
worst case error in a solution. 

 
The project progressed in 4 phases, discussed below. 
 
 

Phase Description Criterion 
Method  

Mean 
Error 
(meters) 

Improve-
ment 
from 

Phase 1 
(%) 

1 Single 
NN 

Best 1.942 N.A. 

2 Multiple 
NN 

Static, 
Uniform 1.684 13.2 

3 Multiple 
NN 

Best 
Achievable 0.997 48.7 

4 
MultipleNN 
+ Partition 
Method 

Best 
Achievable 0.875 54.9 

Table 2 — Project Phase Results 

3.2 Phase 1 Results — Single Neural Network 
Table 3 shows parameters and results for phase 1.  

Determination of the best (smallest) criterion was by trial 
and error. An arbitrary high (poor) criterion was selected, 
which resulted in fast network convergence.  The 
criterion was decreased until the network no longer 
converged within the 750k iteration limit.  The smallest 
(best) criterion found was .20. 

Training cases were developed using the ranges 
specified in table 1. Each input range was used to 
generate 4 data points per input. The total number of 
training cases was 1024 (45). Mean error was 1.942 
meters (6.37 ft). Lane width is 12 ft, so the phase 1 mean 
error of 1.942 m is 53% the width of a lane. 
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Phase 1 Parameter Value 
Number of neural networks 1 
Mean Error, meters, 175 test cases 1.942 
StdDev of Mean Error, meters 1.772 
Criterion Determination Method Best 
Criterion value .20 
Number of test cases 175 
Number of training cases 45 
Training iterations limit 750k 
Test cases with error 61 cm or less, % 18.99 
Test cases with error of 3 m or larger, % 17.7 
Maximum error, meters 18.60 
Training time, mins 2 
Solution Calculation Time (milliseconds) .29 

Table 3 — Phase 1 Parameters and Results 

 
Figure 6 shows the effect the backpropagation 

training iteration limit has on mean error.  As the 
iteration limit increases beyond 3 million, the best 
achievable criterion decreases.  However, mean error 
increases.  For example, for a limit of 50 million 
iterations, mean error is 6.57 m and the criterion is .13.  
A higher mean error and lower criterion indicates a 
network is overtrained—it learned training cases better 
(lower criterion), but failed to generalize between 
training points, resulting in a higher mean error. 
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Figure 6 — Effect of Iteration Limit 
on Mean Error 
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3.3 Phase 2 Results — Modular Neural Network 
Phase 1 network and neuron structures were also 

used in phase 2.  Table 4 shows parameters and results. 

�
Phase 2 Parameter Value 
Number of neural networks 120 
Mean Error, meters, 175 test cases 1.684 
StdDev of Mean Error, meters 1.869 
Criterion Determination Method Static 
Criterion value, for all networks .14 
Number of test cases 175 
Number of training cases 120 � 45 
Training iterations limit 750k 
Test cases with error 61 cm or less, % 29.90 
Test cases with error of 3 m or larger, % 14.86 
Maximum error, meters 18.88 
Total Training time, mins 8 
Solution Calculation Time (milliseconds) .38 

Table 4 — Phase 2 Parameters and Results 

�
The 5 inputs were divided into partitions: 5 

(heading), 2 (current lateral offset), 2 (steering angle), 3 
(road radius), and 2 (speed). This resulted in 120 neural 
networks (5�2�2�3�2). This partitioning scheme was 
arrived at through trial and error. All networks in this 
phase used a uniform criterion value of .14. This is the 
smallest criterion that allowed convergence for all 120 
networks within the maximum iteration limit. 

Mean error was reduced 13% from phase 1 (1.68 
versus 1.94). Standard deviation of mean error increased 
6% to 1.87 meters. The percent of test cases with mean 
error of 61 cm or less increased from 19% to 30%. Mean 
error test cases of 3 meters or more decreased from 15% 
to 18%. In summary, the phase 2 solution is clearly 
superior to the phase 1 solution. 

3.4 Phase 3 Results — Modular Network 
Solution with Best Criterion 

In this phase each neural network was trained 
iteratively for a best achievable criterion using the 
algorithm in figure 5. Best achievable criteria values 
ranged from .02 to .14. The mean was .051, substantially 
less than .14 used for all networks in phase 2 and .20 
used for the phase 1. In this phase, fifteen input 
partitioning scenarios were tested. They produced 
between 2 and 405 neural networks. The 120 neural 
network scenario (5�2�2�3�2) used here (and in phase 
2) produced the smallest mean error. Table 5 shows 
phase 3 parameters and results. 

Mean error was reduced 49% from phase 2 (1.94 to 
.997 m). Standard deviation of mean error decreased 7% 
to 1.729 meters. The percent of test cases with mean 

error of 61 cm or less increased from 30% to 66%.  Mean 
error test cases of 3 meters or more decreased from 18% 
to 10%. The phase 3 solution is clearly superior to the 
phase 1 and phase 2 solutions. Effectively partitioning 
the input domain was the principle difficulty encountered 
in this phase. However, for the 15 scenarios tested, it was 
not difficult to find a scenario that produced a better 
result than the single network solution. 

 
 

Phase 3 Parameter Value 
Number of neural networks 120 
Mean Error, meters, 175 test cases .997 
StdDev of Mean Error, meters 1.729 
Criterion Determination Method Best 
Mean criterion value .051 
Number of test cases 175 
Number of training cases 120 � 45 
Training iterations limit 750k 
Test cases with error 61 cm or less, % 65.98 
Test cases with error of 3 m or larger, % 9.51 
Maximum error, meters 18.54 
Total Training time, mins 317 
Solution Calculation Time (milliseconds) .38 

Table 5 — Phase 3 Parameters and Results 

 

3.5 Phase 4 Results — Modular Solution With 
Partitioning Method 

In the previous phase mean error was reduced 
substantially by minimizing each network’s criterion 
value.  In this phase, the partitioning method shown in 
Figure 5 was used to generate and test 32 input domain 
partitions.  Results for the best of these 32 scenarios are 
shown in table 6. 
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Phase 4 Parameter Value 
Number of neural networks 3528 
Mean Error, meters, 175 test cases .875 
StdDev of Mean Error, meters 1.702 
Criterion Determination Method Best 
Mean criterion value .034 
Number of test cases 175 
Number of training cases 3528 � 45 
Training iterations limit 750k 
Test cases with error 61 cm or less, % 74.68 
Test cases with error of 3 m or larger, % 8.80 
Maximum error, meters 18.85 
Total Training time, mins 4671 
Solution Calculation Time (milliseconds) 3.68 

Table 6 — Phase 4 Parameters and Results 
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Table 6 shows the lowest achieved mean error of .88 
meters. This is a 38% decrease in mean error from phase 
3, and a 55% decrease in error from the single network 
solution. The percent of test cases with mean error of 61 
cm or less increased 13% to 75%.  Mean error test cases 
of 3 m or more decreased from 9.51% to 8.80%. The 
partitioning method also found another solution with 
nearly the same quality as the phase 3 solution, but with 
53% fewer networks (56 versus 120). In summary, the 
partitioning method produced a number of superior 
solutions compared with the phase 3 trial and error 
partitioning approach. 

How fast are the single and multiple network 
solutions? A single network calculates a solution in 
about 1/5 of a millisecond on a 3 GHz Pentium, which is 
sufficiently fast. Table 7 shows calculation times.  
Project goals related to calculation speed were met. 

 
�

Phase Number of 
Networks 

Single Solution 
Calculation Time 
(milliseconds) 

1 1 0.18 
2, 3 120 0.25 
4 3528 3.68 

Table 7 — Solution Calculation Times 

 
4. Conclusions 

The goal of this project was the calculation of future 
vehicle lateral position with sufficient speed and 
accuracy. The solution used multiple cooperative 
modular neural networks to calculate future vehicle 
lateral position. Backpropagation training was used. An 
oracle was used to generate training cases. An algorithm 
to calculate each modular network’s best achievable 
matching criterion was developed. An input domain 
partitioning method was developed that produced 
modular solutions that reduced mean error between 46% 
and 55% compared with a single network solution. All 
modular solutions were substantially superior to the 
monolithic solution. Increasing the number of networks 
in a modular solution generally improved the solution 
quality. Modular solutions were much less sensitive to 
greater than optimal increases in the number of training 
cases compared with the monolithic solution. Modular 
solutions also produced superior results for nearly all 
variations in the number of training cases. Neural 
network calculation speeds were very fast and uniform 
compared with the non-linear mechanistic vehicle 
location prediction algorithm. In summary, the use of 
cooperative modular artificial neural networks to 
calculate future vehicle position provided a substantially 
more accurate approximation compared with results from 
a single monolithic neural network. 
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