
�

�

Vehicle Steering Control Using Modular Neural Networks

 Michael Olsen Darter V. Scott Gordon
 California State University, Sacramento California State University, Sacramento
 michael@olsendarter.com gordonvs@ecs.csus.edu

Abstract

The RoadViewTM project at the Advanced Highway
Maintenance Construction Technology (AHMCT)
research center seeks to improve the safety and
efficiency of snow removal by providing information to
the driver using an in-vehicle computer. The calculation
of future vehicle lateral position is achieved with
cooperative modular artificial neural networks, trained
using data generated from a known, but somewhat slow,
mathematical model. The performance of a single
monolithic neural network is compared against a
cooperative modular neural network trained with
uniform matching criteria. Additionally, an algorithm to
calculate a best achievable matching criterion for each
network is described and the best achievable matching
criterion is combined with a modular network
partitioning scheme. The use of cooperative modular
artificial neural networks reduces mean error between
46% and 55% compared with the single network.

1. Introduction

1.1 RoadViewTM SnowPlow Application

 The Advanced Snowplow System (RoadView) is an
intelligent vehicle research project at the Advanced
Highway Maintenance Construction Technology
(AHMCT) research center. The RoadView project seeks
to improve the safety and efficiency of snow removal by
providing information to the driver. The system consists
of an in-vehicle computer connected to an LCD screen
used by the driver. The first generation system was
installed in a CalTrans 10 wheel snowplow [1]. The in-
vehicle computer is connected to various sensors—a
digital compass, GPS receiver, steering wheel position
encoder, magnetometer, and are integrated to provide
driver steering guidance using auditory and visual
feedback.

In low visibility conditions, steering guidance is
important for lane keeping, improves driver efficiency
and enables the snowplow to hug road edges, guardrails,
and other obstacles while simultaneously reducing
snowplow and obstacle contact.

Figure 1 shows the RoadView display as seen by the
driver. The solid rectangle in the lower left of the display
represents the current vehicle position within the lane.
The two white vertical lines represent lane edges. The
bright square near the top of the display represents the
future (predicted) position of the vehicle. Current and
future lane position is shown in figure 2.

�

Figure 1 — RoadView Application Display

�

Figure 2 — Future and Current
Vehicle Lateral Position

�

�

Future vehicle position is calculated using a system
which performs a complex set of nonlinear computations
[4] - referred to as the oracle. The oracle has seven
inputs: vehicle speed, road curvature radius, heading,
lateral offset, steering angle, yaw rate, and a road shape
indicator. The driver’s task is to keep the future position
indicator in the center of the lane. Turning the steering
wheel moves the indicator to the left or the right. As
long as the driver keeps the indicator near the center of
the lane within the display, the vehicle will remain in the
center of the lane.

1.2 Problem Description

In the present RoadView system, the screen is
updated 10 times a second. The oracle is computationally
intensive relative to RoadView’s calculation cycle time
budget. Ideally, a low power embedded processor would
be sufficient to run the RoadView application. The goal
of this project is to replicate the effective computation of
the oracle with faster speed, by using a neural network.

Feedforward multilayer perceptron neural networks
are function approximators and can be trained to
represent nearly any function [7]. The proposed solution
uses multiple cooperative modular neural networks to
calculate future vehicle lateral position. Each of these
modular networks is responsible for a decomposed
portion of the input domain. The input domain contains
five inputs (see table 1) and is disjointedly partitioned.
Each modular neural network is independently trained
using a single partition. Together, all of the
independently trained modular neural networks provide a
solution for the full input domain.

1.3 Modular Neural Networks

In the 1990s researchers used multiple network
solutions to solve a variety of problems. It is useful to
distinguish between networks arranged in ensemble and
modular combinations. Each individual network in an
ensemble works to solve the entire problem. Different
networks in the ensemble might use different solution
strategies, methods, or different input data (e.g. data
filtered differently). Results from multiple ensemble
networks are combined using averaging and other
statistical methods. Benefits of using multiple ensemble
networks are better generalization and increased
reliability through redundancy [10]. By contrast,
modularity uses decomposition for problem solving
[6][8]. Each network is responsible for solving a portion
of the decomposed problem. That is, each network is a
specialist at solving a particular portion of the problem.

Module results may be combined cooperatively,
competitively, supervisory, or sequentially [10]. A
cooperative combination uses unqualified results from

each module. Advantages of using a modular approach
include superior solutions and the ability to solve
otherwise intractable problems [2]. Another useful
distinction in multi-network solutions is between
decomposition and replication. Modular systems use
decomposition and ensembles do not. Both ensemble
and modular systems may use replication. This project
uses a cooperative modular arrangement. Each modular
network contributes equally to the final solution. All
modules use the same network structure (replication).

Lideng [8] used multiple neural networks to model
the viscosity of an atmospheric column with 6 inputs and
1 output. Fu [3] used a divide and conquer scheme to
generate a self-growing collection of modular networks,
by recursively dividing into 2 partitions until the entire
domain was well learned. Haecker [5] asserts that neural
networks are appropriate for control applications.

2. Neural Network Solution

Many different models of neurons and networks are
available [9]. We use feedforward networks with a single
hidden layer, and backpropogation training.

2.1 Single Neural Network Solution
We first used a monolithic feedforward network

with 1 hidden layer and backpropagation training. There
were 5 inputs and 1 output. The oracle requires seven
inputs. The first five of these inputs were used as neural
network inputs (see table 1). The 6th input (current
vehicle yaw rate) and 7th input (road shape indicator)
were not used. A straight road was approximated with a
very large roadway radius.

The range for each neural network input is shown in
table 1 below.

�

Input Input
Description Unit Range Oracle’s

Range

1 Vehicle
heading Degrees -90 to 90 -90 to 90

2
Vehicle
lateral
position

Meters -4 to 4 -4 to 4

3
Steering
wheel angle
relative

Degrees -270 to
270

-2,160,
+2,160

4
Radius of
road
curvature

Meters (-1000,-50)
(+50,1000)

-10000,
10000

5 Vehicle
speed Miles/hr 0 to 36 >= 0

Table 1 — Future Lateral Offset
Calculation Inputs

�

�

To generate network training cases each input was
evenly divided into 4 data points. For example, vehicle
speed ranges from 0 to 36 mph, so 4 training values for
speed were generated: 0, 12, 24, and 36. The total
number of training cases was therefore 1024 (45), which
covered the input domain. A single training case was
considered solved if the output calculated by the oracle
and neural network were within a specified tolerance of
each other, referred to here as the criterion value.

2.2 Modular Neural Network Solution
In a modular network, each network is solely

responsible for a particular portion of the input space.
The complete problem is solved by using all of the
modular networks’ outputs, as shown in figure 3.

��� �����

��	
�����

��	
�����

��	
�����

��	��	�

���������	
���
�����	���

��	
���������������

�
����	�

Figure 3 — Modular Neural Network Schema

The first step in setting up the scheme in figure 6 is

to partition the problem input domain. Input variables are
partitioned into equal sized intervals. For example, input
#1 (vehicle speed) ranges between 0 and 36. It was
divided into 4 uniform intervals: [0,9], [9,18], [18,27],
and [27,36]. Each network input was similarly divided.
After the input domain is partitioned, the task of
associating an arbitrary set of inputs with the appropriate
modular network is performed, shown by the gray box in
figure 3.

2.3 Modular Neural Networks with Best
Achievable Criterion

The modular approach uses multiple independently
trained neural networks. Ideally, network training
maximizes accuracy, which implies a need to minimize
each network’s matching criterion. If a network’s
matching criterion is too small, the backpropagation
training algorithm will not converge. If it is too large,
the resulting network loses accuracy. To determine the
best achievable network criterion, the algorithm shown
in figures 4 and 5 is used.

�	��	

 ��	������� ���	���� ��	�����

��	
���

 ��!��"��#

$��	� ��	������� ��	�����

%��

 ��	������� ��	������� �	��

��

 ��	������&'����#

%��

��

��	
���

 ��!��"��#

%��

��

(���)�$��	� ��	�����

�	��

$��	� ��	������� ��	�����

 ��	������� ��	������*��	��

 ��	������+'����#

��	
���

 ��!��"��#

%��

��

$��	� ��	������� ��	�����

(����)�	��(��)� ��	�����

%��

��

�
Figure 4 — Best Achievable Criterion Algorithm

The modular partitioning method shown in Figure 5

was used to solve the 5 input future vehicle lateral offset
problem. In steps 1-4, each input is separately
partitioned and tested. In steps 5-6, the best partitions
for each input are combined. In steps 7 and 8 a
tournament is used to select the final best combination.

�

�

�
Step Action
1 Select the 1st input out of N inputs.

2
Partition selected input into 1..P
partitions, keeping remaining inputs
unpartitioned.

3 For each of the partition sets in step 2,
calculate the mean error for each.

4 Perform steps 2 and 3 for all remaining
inputs. Go to step 5 when done.

5

For each input, note the 2 (B=2)
scenarios with the lowest mean error.
Note the corresponding number of
partitions for each input.

6

Create a scenario for each combination
(cross product) of the partitions for each
input in step 5. There should be B�N
scenarios.

7 Test the scenarios created in step 6.

8 Choose the scenario from step 7 with the
lowest mean error.

Figure 5 — Modular Partitioning Method

�

�

2.4 Scenario Determination Using the
Partitioning Method

The input domain was partitioned using the method
discussed in section 2.3. Each of the 5 inputs (N=5) was
partitioned into 1 to 8 (P=3) partitions. The number of
partitions for the best two scenarios (B=2) for each input
were retained. This resulted in 32 (25) scenarios. These
32 scenarios were tested and the one with the lowest
mean error was selected as the best solution.

3. Results
3.1 Experimental Method

Each input was divided into 17 test points, resulting
in 1,419,857 (175) test cases. An error value is
calculated for each test case as the absolute difference
between the value calculated by the oracle and the neural
network output. A number of metrics were then used
during testing to characterize the accuracy of solutions.
These are discussed below:

• Mean error

• Standard deviation of error

• % of cases with error 61cm or less. Measures the
proportion of test cases that have high accuracy.

• Percent of test cases with error of 3 meters or more.
Measures the proportion of cases with poor accuracy.

• Mean criterion value. a value ranging from 0 to 1 that
is both a neural network training parameter and an
indicator of network uniformity and accuracy.

• Maximum error: Used to evaluate the severity of the
worst case error in a solution.

The project progressed in 4 phases, discussed below.

Phase Description Criterion
Method

Mean
Error
(meters)

Improve-
ment
from

Phase 1
(%)

1 Single
NN

Best 1.942 N.A.

2 Multiple
NN

Static,
Uniform 1.684 13.2

3 Multiple
NN

Best
Achievable 0.997 48.7

4
MultipleNN
+ Partition
Method

Best
Achievable 0.875 54.9

Table 2 — Project Phase Results

3.2 Phase 1 Results — Single Neural Network
Table 3 shows parameters and results for phase 1.

Determination of the best (smallest) criterion was by trial
and error. An arbitrary high (poor) criterion was selected,
which resulted in fast network convergence. The
criterion was decreased until the network no longer
converged within the 750k iteration limit. The smallest
(best) criterion found was .20.

Training cases were developed using the ranges
specified in table 1. Each input range was used to
generate 4 data points per input. The total number of
training cases was 1024 (45). Mean error was 1.942
meters (6.37 ft). Lane width is 12 ft, so the phase 1 mean
error of 1.942 m is 53% the width of a lane.

�

Phase 1 Parameter Value
Number of neural networks 1
Mean Error, meters, 175 test cases 1.942
StdDev of Mean Error, meters 1.772
Criterion Determination Method Best
Criterion value .20
Number of test cases 175
Number of training cases 45
Training iterations limit 750k
Test cases with error 61 cm or less, % 18.99
Test cases with error of 3 m or larger, % 17.7
Maximum error, meters 18.60
Training time, mins 2
Solution Calculation Time (milliseconds) .29

Table 3 — Phase 1 Parameters and Results

Figure 6 shows the effect the backpropagation

training iteration limit has on mean error. As the
iteration limit increases beyond 3 million, the best
achievable criterion decreases. However, mean error
increases. For example, for a limit of 50 million
iterations, mean error is 6.57 m and the criterion is .13.
A higher mean error and lower criterion indicates a
network is overtrained—it learned training cases better
(lower criterion), but failed to generalize between
training points, resulting in a higher mean error.

����������	
��	�������	��
������
���������

,-,,

,-.,

�-,,

�-.,

�-,,

�-.,

/-,,

,-0 ,-. ,-1 ,-2 ,-3 ,-4 � �-�

5������"��	���	����6���	�����������

�
�
�
�
�7
��
�
��
��
�

Figure 6 — Effect of Iteration Limit
on Mean Error

�

�

3.3 Phase 2 Results — Modular Neural Network
Phase 1 network and neuron structures were also

used in phase 2. Table 4 shows parameters and results.

�
Phase 2 Parameter Value
Number of neural networks 120
Mean Error, meters, 175 test cases 1.684
StdDev of Mean Error, meters 1.869
Criterion Determination Method Static
Criterion value, for all networks .14
Number of test cases 175
Number of training cases 120 � 45
Training iterations limit 750k
Test cases with error 61 cm or less, % 29.90
Test cases with error of 3 m or larger, % 14.86
Maximum error, meters 18.88
Total Training time, mins 8
Solution Calculation Time (milliseconds) .38

Table 4 — Phase 2 Parameters and Results

�
The 5 inputs were divided into partitions: 5

(heading), 2 (current lateral offset), 2 (steering angle), 3
(road radius), and 2 (speed). This resulted in 120 neural
networks (5�2�2�3�2). This partitioning scheme was
arrived at through trial and error. All networks in this
phase used a uniform criterion value of .14. This is the
smallest criterion that allowed convergence for all 120
networks within the maximum iteration limit.

Mean error was reduced 13% from phase 1 (1.68
versus 1.94). Standard deviation of mean error increased
6% to 1.87 meters. The percent of test cases with mean
error of 61 cm or less increased from 19% to 30%. Mean
error test cases of 3 meters or more decreased from 15%
to 18%. In summary, the phase 2 solution is clearly
superior to the phase 1 solution.

3.4 Phase 3 Results — Modular Network
Solution with Best Criterion

In this phase each neural network was trained
iteratively for a best achievable criterion using the
algorithm in figure 5. Best achievable criteria values
ranged from .02 to .14. The mean was .051, substantially
less than .14 used for all networks in phase 2 and .20
used for the phase 1. In this phase, fifteen input
partitioning scenarios were tested. They produced
between 2 and 405 neural networks. The 120 neural
network scenario (5�2�2�3�2) used here (and in phase
2) produced the smallest mean error. Table 5 shows
phase 3 parameters and results.

Mean error was reduced 49% from phase 2 (1.94 to
.997 m). Standard deviation of mean error decreased 7%
to 1.729 meters. The percent of test cases with mean

error of 61 cm or less increased from 30% to 66%. Mean
error test cases of 3 meters or more decreased from 18%
to 10%. The phase 3 solution is clearly superior to the
phase 1 and phase 2 solutions. Effectively partitioning
the input domain was the principle difficulty encountered
in this phase. However, for the 15 scenarios tested, it was
not difficult to find a scenario that produced a better
result than the single network solution.

Phase 3 Parameter Value
Number of neural networks 120
Mean Error, meters, 175 test cases .997
StdDev of Mean Error, meters 1.729
Criterion Determination Method Best
Mean criterion value .051
Number of test cases 175
Number of training cases 120 � 45
Training iterations limit 750k
Test cases with error 61 cm or less, % 65.98
Test cases with error of 3 m or larger, % 9.51
Maximum error, meters 18.54
Total Training time, mins 317
Solution Calculation Time (milliseconds) .38

Table 5 — Phase 3 Parameters and Results

3.5 Phase 4 Results — Modular Solution With
Partitioning Method

In the previous phase mean error was reduced
substantially by minimizing each network’s criterion
value. In this phase, the partitioning method shown in
Figure 5 was used to generate and test 32 input domain
partitions. Results for the best of these 32 scenarios are
shown in table 6.

�

Phase 4 Parameter Value
Number of neural networks 3528
Mean Error, meters, 175 test cases .875
StdDev of Mean Error, meters 1.702
Criterion Determination Method Best
Mean criterion value .034
Number of test cases 175
Number of training cases 3528 � 45
Training iterations limit 750k
Test cases with error 61 cm or less, % 74.68
Test cases with error of 3 m or larger, % 8.80
Maximum error, meters 18.85
Total Training time, mins 4671
Solution Calculation Time (milliseconds) 3.68

Table 6 — Phase 4 Parameters and Results

�

�

Table 6 shows the lowest achieved mean error of .88
meters. This is a 38% decrease in mean error from phase
3, and a 55% decrease in error from the single network
solution. The percent of test cases with mean error of 61
cm or less increased 13% to 75%. Mean error test cases
of 3 m or more decreased from 9.51% to 8.80%. The
partitioning method also found another solution with
nearly the same quality as the phase 3 solution, but with
53% fewer networks (56 versus 120). In summary, the
partitioning method produced a number of superior
solutions compared with the phase 3 trial and error
partitioning approach.

How fast are the single and multiple network
solutions? A single network calculates a solution in
about 1/5 of a millisecond on a 3 GHz Pentium, which is
sufficiently fast. Table 7 shows calculation times.
Project goals related to calculation speed were met.

�

Phase Number of
Networks

Single Solution
Calculation Time
(milliseconds)

1 1 0.18
2, 3 120 0.25
4 3528 3.68

Table 7 — Solution Calculation Times

4. Conclusions

The goal of this project was the calculation of future
vehicle lateral position with sufficient speed and
accuracy. The solution used multiple cooperative
modular neural networks to calculate future vehicle
lateral position. Backpropagation training was used. An
oracle was used to generate training cases. An algorithm
to calculate each modular network’s best achievable
matching criterion was developed. An input domain
partitioning method was developed that produced
modular solutions that reduced mean error between 46%
and 55% compared with a single network solution. All
modular solutions were substantially superior to the
monolithic solution. Increasing the number of networks
in a modular solution generally improved the solution
quality. Modular solutions were much less sensitive to
greater than optimal increases in the number of training
cases compared with the monolithic solution. Modular
solutions also produced superior results for nearly all
variations in the number of training cases. Neural
network calculation speeds were very fast and uniform
compared with the non-linear mechanistic vehicle
location prediction algorithm. In summary, the use of
cooperative modular artificial neural networks to
calculate future vehicle position provided a substantially
more accurate approximation compared with results from
a single monolithic neural network.

5. References

[1] AHMCT RoadView Project Page (2005),
http://www.ahmct.ucdavis.edu/roadview/r_mn.htm

[2] R. Anand, K. Mehrotra, C.K. Mohan, and S.Ranka,
“Efficient Classification for Multiclass Problems Using
Modular Neural Networks”, IEEE Transactions on
Neural Networks, Vol. 6, No. 1, January 1995, pp. 117.

[3] H.C. Fu, Y.P. Lee, C.C. Chiang, and H.T. Pao,
“Divide-and-Conquer Learning and Modular Perceptron
Networks”, IEEE Transactions on Neural Networks, Vol.
12, No. 2, pg. 250. 2001.

[4] M. Gabibulayev, B. Ravani, and T.A. Lasky,
“Stochastic Modeling for Lateral Control in Snowplow
Operations” in 9th World Congress on Intelligent
Transport Systems, Chicago, IL, October 2002.

[5] J. Haecker and S. Rudolph, “On Neural Network
Topology Design for Nonlinear Control”, Proceedings
SPIE Aerosense 2001 Conference On Applications and
Science of Computational Intelligence IV, Orlando
Florida, April 16th 2001.

[6] B. Happel and M.J. Murre, “The Design and
Evolution of Modular Neural Architectures”, Neural
Networks, Vol. 7, No. 6/7, pp 985-1004. 1994.

[7] K. Hornik, M. Stinchcomb, and H. White,
“Multilayer Feedforward Networks are Universal
Function Approximators, ” IEEE Transactions on Neural
Networks, Vol 2, No. 5, pp. 359-366. 1989.

[8] P. Lideng, M. Junying, and Z. Yuning, “The
Application of Multiple Neural Networks in Software
Instrument”, Beijing University of Chemical
Technology, http://www.paper.edu.cn/scholar/download.
jsp?file=panlideng-5

[9] D.M. Skapura, Building Neural Networks, ACM
Press, New York, 1996.

[10] A.J. Sharkey, Combining Artificial Neural Nets:
Ensemble and Modular Multi-Net Systems, Springer-
Verlag New York, 1999.

