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Abstract 
 

We suggest a model that evolves the behavioral 
knowledge of a virtual robot. The knowledge is 
represented in classification rules and a neural network, 
and is learned by a genetic algorithm. The model consists 
of a virtual robot with behavior knowledge, an 
environment that it moves in, and an evolution performer 
that includes a genetic algorithm. We have also applied 
our model to an environment where the robots gather 
food into a nest. When comparing our model with the 
conventional method on various test cases, our model 
showed superior overall learning. 

 
 
1. Introduction 
 

The use of robots in order to perform tasks under a 
dynamic and an informal environment has grown rapidly. 
At the same time, many researchers have studied artificial 
life in order to apply characteristics of ant behavior to 
control robots or software agents [1][2]. AI methods exist 
for representing the knowledge of a robot’s behavior, such 
as evolving neural networks [3] and genetic programming 
techniques [4]. But if the knowledge of a robot is 
contained in rules or in a semantic network, a robot’s 
response speed may suffer because the inference process 
may be complicated. If the behavior of a robot is 
controlled only by a neural network with a genetic 
algorithm, learning speed may drop. 

In this paper, we suggest a model that evolves the 
virtual robot's behavior to accomplish a task more 
efficiently and speedily than that of a conventional 
evolving neural network. For this work, we combine the 
classification rule with neural network, evolved using a 
genetic algorithm. Our motivation is to test whether 
including additional information on the chromosome, such 
as classification rules for controlling robot’s behavior (in 
addition to the neural network data) leads to more 
effective problem solving. We construct a system to apply 

our model and evaluate it, consisting of virtual robots that 
have behavior knowledge represented by the classification 
rule and neural network, the environment that robots move 
in, and the evolution performer that includes the genetic 
algorithm. In the virtual environment, robots with 
intelligent behavior knowledge avoid obstacles and gather 
foods into a nest. We compare our method with a 
conventional evolutionary neural network approach using 
the same conditions and fitness measures. 

The next section briefly reviews artificial life, genetic 
algorithms, classification rule, and an evolving neural 
network approach related to our work. Section III 
describes the suggested model and section IV introduces 
the implementation of an environment for application and 
reports on an experimental evaluation. Finally, section V 
offers conclusions and future work. 
 
2. Related work 
2.1. Artificial life and genetic algorithm 
 

Many researchers have studied the field of artificial life, 
with the intention of interpreting characteristics of life and 
applying them to engineering applications [5][6]. 
Artificial life uses a bottom-up method, which is opposite 
that of conventional artificial intelligence. It generates 
complex creative behaviors from simple behavior factors 
of a lower level [7], and is the approach on which our 
paper is based. 

 
2.2. Genetic algorithm 
 

Genetic algorithms are a search method that can be 
used both for solving problems and for modeling 
evolutionary systems [8]. The basic idea of a genetic 
algorithm is simple. A population of candidate solutions is 
created, and then the population is evolved with use of 
various operators (such as selection, crossover, and 
mutation). Natural selection is utilized through an 
appropriate measure of fitness. There are many ways of 
implementing this simple idea.  We use the genetic 
algorithm to evolve robot knowledge consisting of neural 
network and classification rules. 



2.3. Classification rules 
 

In the late 1970’s, classifier systems were introduced in 
which classification rules were learned using a genetic 
algorithm  [9]. Each string in the population is a set of 
rules in this system. Each rule is generated with the 
classifier in the condition of the rule and the message in 
the conclusion. There are two approaches; the Michigan 
[9] and Pittsburgh methods [10]. Our work is closest to 
the Pittsburgh method because we generate a set of rules 
and a neural network from chromosomes, and use these as 
the behavior knowledge of a virtual robot. In the 
Pittsburgh method, a robot’s entity is characterized not 
with a single a rule, but with a set of rules. Thus, this 
approach doesn’t evaluate each rule independently, but 
instead produces sets of rules using the genetic algorithm, 
and then calculates the fitness for each set. The details of 
the classification rule will be shown in section 3.2 
 
2.4. Evolving neural network 
 

There are three ways that a genetic algorithm can be 
used to evolve a neural network: (1) by evolving the 
weights between nodes [11][12], (2) by generating the 
structure of the neural network [13], and (3) to do both 
[3]. We utilize the third method, in which the learning of 
the link weights and the generation structure is mixed 
within the same chromosome. In a neural network, the 
connection between nodes is represented by a connection 
descriptor that consists of both the linking weights and the 
structure.  
 
3. An evolving model for a virtual robot 
 

In this section, we suggest an evolving model of 
behavior for virtual robots, and describe the structure of 
the model and the function of its components. We will 
also show how to represent the knowledge for a robot’s 
behavior, and how to train the robot. 
 
3.1. Overview of evolving model 

 
A structure of our model for evolving a robot’s 

behavior is shown in Figure 1. It uses the method of 
machine learning in which a human doesn’t provide prior 
knowledge of the problem domain. Classification rules 
and the neural network represent the knowledge of a 
robot’s behavior. The knowledge is learned using the 
genetic algorithm so that, over time, robots perform better 
on their assigned task. The rule descriptor for 
classification rules and the link descriptor for the neural 
network are both represented as binary strings. 
 

 
Figure 1. The structure of the behavior evolving  model 

 
An overview of the algorithm for evolutionary learning 

that we suggest is shown in Figure 2. The algorithm 
creates a set of genes (initially random) composed of 
classification rules and neural networks, which are 
analyzed by the interpreter and then applied to an 
environment. The virtual robot then is executed for some 
time within the environment, and its performance at 
achieving the goal is evaluated. The genes that adapt best 
to the environment are selected according to their fitness 
for the next generation, producing new genes with 
potentially better performance. As a result, after these 
steps are repeated for several generations, virtual robots 
will acquire behavior knowledge that enhances their 
ability to achieve the goal. 
 
3.2. The components of the model 
3.2.1. Evolution performer Our evolution performer 
includes the genetic algorithm, which generates and 
evolves a robot’s characteristics. The chromosome of the 
gene consists of the part of the rule descriptor related to 
classification rules, the link descriptor for the neural 
network, and meta-data including the number of rules and 
the size of network.  

A steady-state genetic algorithm, shown in Figure 2, is 
used for the evolution of a robot’s knowledge in our 
model, because the exact fitness of the strings is unknown, 
and can only be estimated by testing the virtual robots. 
The steady-state method replaces some - not all - 
individuals of the current gene pool in order to produce 
the next generation. That is, it initially creates many 
genes, and then chooses excellent ones of those. A 2-
dimensional local tournament selection method is used for 
selecting superior genes, in which a winner is chosen by 
competing two neighboring random genes. After 
crossover and mutation are applied and two new genes are 
produced, they are substituted for losing genes from 
another similar tournament. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  Algorithm of behavior evolution 

3.2.2. Classification rule and rulebase. Some of the 
chromosomes generated by the evolution performer are 
classification rules, and are stored in the rule base that 
contains knowledge for the robot to utilize input signals 
from the environment. Each rule is represented by if-then 
as follows.  
 

if s(t) then a(t) 
     s(t) : input value at time t , s(t)

�
S 

     a(t) : output value at time t, a(t) � A 
     S :  set of available inputs  
 A :  set of available outputs  

 
There is a condition part consisting of {0,1,#}, and a 

conclusion part consisting of {0,1} - where pound 
symbol,#, means “don’t care”. If an input s(t) 

�
S is 

matched with a rule in the rule base, the rule is fired and a 
consequence a(t) � A is run. All input values are in S �
{0,1,#}L , such that each member is described by a bit 
string of length L. 

The rule descriptor is used to build classification rules 
from bit strings, or to match an input signal with the 
condition part of rules in the rule base. An example of 
transforming a bit string into a rule descriptor is shown in 
Figure 3. 

In Figure 1 the process by which the rule is fired is as 
follows. First the input signal is compared by bit unit with 
the conditions of the rules in the rule base. If a match is 
found then the interpreter outputs 1, otherwise 0. For 
example, if input value is “01001011” in Figure 3, the 
result is “100” because only the first rule was matched. 
The interpreter processes this result, in turn outputting the 

conclusion part of any applicable rule, in order to produce 
the robot’s behavior 
 

 
Figure 3. An example of a rule descriptor 

 
3.2.3. Neural network and its construction. The neural 
network is generated by the genetic algorithm and is 
initially random. For our virtual robots, the network 
computes its output based on the information from 
environment via input units, the result of fired rules, and 
the content of memory. In our model, the neural network’s 
genetic encoding, as described earlier, consists of three 
parts: “from” for start node, “to” for end node, and 
“weight” for link strength. In this way, the descriptor also 
represents the state of links between nodes in a neural 
network.  If two links happen to contain identical ‘from’ 
and ‘to’ nodes, their weights are added. Figure 4 shows an 
example of a neural network represented as a bit string 
using link descriptors. 

 

 
Figure 4.  An example of link descriptors 

 

 
Figure 5. Neural network architecture for robot 

BehaviorEvolution() 
{  

Initialize 2D population of random bitstrings 
for each generation 
 {  

pair1(a,b) := randomly selected pair of neighboring genes 
  pair2(a,b) := randomly selected pair of neighboring genes 
  pair3(a,b) := randomly selected pair of neighboring genes 
  pair4(a,b) := randomly selected pair of neighboring genes 
  for each pairX(a,b),  (X=1..4) 
  {  

robots (X.a,X.b) := build rules and NN from genes(a,b) 
    generate new environment (Food, Block, Nest) 
    several copies of robot X.a into environment 
    run environment and determine fitness(X.a) 
    remove robots X.a and reset environment 
    place several copies of robot X.b into environment 
    run environment and determine fitness(X.b) 
  } 
  P1 := maximum fitness gene from pair1 
  P2 := maximum fitness gene from pair2 
  R1 := lowest fitness gene from pair3 
  R2 := lowest fitness gene from pair4 
  children := mutation(crossover(P1,P2)) 
  children replace R1,R2 in the population 
  } 

} 
 



The particular neural network evolved in our 
application is shown in Figure 5. There are 44 input units, 
corresponding to: sensor inputs 1 through 20 (1 bit each), 
results from rulebase (10 rules, 1 bit each), and 14 random 
inputs. There are then 12 hidden units, and 7 output units 
for generating the resulting output behavior, described in 
section 4.2. (note: since there are a total of 44+12+7=63 
units in the neural network, a node of the link descriptors 
in our robot application require 6 bits each, rather than the 
3 bits shown in the previous smaller example of Figure 4.) 
 
3.2.4. Interpreter and virtual robot’s behavior. The 
interpreter coordinates the components that contribute to 
the robot knowledge. These include the rulebase (Rbase), 
the neuralNetwork and Unit values (I: Input layer, H: 
Hidden layer, O: Output layer) describing a particular 
neural network, and the input/output with the 
environment. The interpreter matches values from each 
robot with rules in rulebase, then sends the fired rule and 
the input value together to the neural network. The 
resulting behavior information is used by the virtual 
robots to accomplish their task efficiently. Figure 6 shows 
an algorithm for the interpreter. 
 

Figure 6. Interpreter algorithm 
 

4. Application and evaluation 
 
In order to show the efficacy of the suggested model, 

we have implemented it and observed its behavior for 
various scenarios. The details are shown in the following 
subsection. 
 
4.1. Virtual environment and robot entity 

The virtual environment fort the robot’s task is a grid, 
in which the length of each square is 1. Also on the grid is 
Nest (robot’s nest), Food (robot’s food), and Block 
(obstacles). In this space, robots perform their task, which 
consists of gathering Food into Nest, using behavior 
primitives shown in Table 1. The 7 behavior primitives 
correspond to the 7 outputs from the neural network. Note 
that two pheromone primitives are included for quickly 
locating Food under the assumption that there is more 
food on the paths robots pass through frequently. Some 
limits are applied to the virtual environment and to the 
robot’s behavior, as follows:   

(1) It is impossible for two objects (such as Food and 
Block) to occupy the same grid location at the 
same time. 

(2) Block can’t be moved to any other square. 
(3) Only robots can change location of Food. 
(4) Robot can only drop down Food into Nest. Putting 

down Food to places other than Nest is not 
allowed. 

 
Table 1. Robot’s behavior primitives 

 
Figure 7 shows our virtual robot with sensors of three 

direction and arms. 
 

 
Figure 7.  The virtual robot 

 
4.2. Rulebase and neural network 
 

The condition part of each rule in the rulebase has 12 
bit string values, because there are twelve binary values 
coming from the sensors of each robot. The following rule 
is an example we used for application. 

 
If  ######0##1#0 then 1 else 0 
 
Each bit indicates whether there is food, robot, and/or 

blocks in three directions (left, front, right) from the robot, 
whether a robot is carrying food or is heading towards the 
nest, and whether a robot’s current location is in fact the 
nest.  For example, the condition portion of the above rule 
tests whether there is no block to the left of the robot, and 
robot is carrying food, and the robot’s current location is 
not the nest. If the sensors indicate that these conditions 
are met, then the rule is fired. 

The neural network includes an input layer that 
receives the 12 bits of sensor information described 
earlier, 8 bits of pheromone value (two types, 4 bits each), 

Behavior primitives Meaning 

Go Forward Move one grid step 

Turn Left Turn left 90° 

Turn Right Turn right 90° 

Lift Up Lift up Food 

Drop Down Drop down Food into Nest 

Pheromone1 Spray P. on current location 

Pheromone2 Spray P. on current location 

Interpret(R,Rbase,neuralNetwork,I,H,O) 
{ 
for each robot r  ∈ R { 

inputString =  sense() 
resultString = CRuleInterpret(InputString,Rbase) 
result = neuralNetwork(inputString ∪ resultString,neuralNetwork,I,H,O) 
perform(result,0) 

} 
} 



in addition to the result values of the fired rules. There are 
then twelve hidden nodes, and an output layer that 
provides robots with commands to move, turn, lift up and 
drop down. In our paper we use 10 classification rules, 
and limit the number of neural network links to 512. 

 
4.3. Fitness 
 

Fitness plays an important role in selecting good genes 
for producing the next generation. For fitness, we use the 
sum of compensational values, which a robot acquires 
through acting in the environment for a given time 
according to the system clock and is expressed as follows: 
(1) If a robot moves and there is Food in front adjacent 

cell, the robot is given 1 point. 
(2) If a robot lifts up Food, the robot is given 1 point. 
(3) If a robot drops down Food into the Nest, the robot 

is given 1000 points. 
 
The fitness for the corresponding gene is then 

calculated as the sum of the points acquired by each of 
the n identical robots Ri:  
 

 Fitness(gene) =  
 

 
4.4. Experimental evaluation 
 

Parameters used for simulation are shown in Table 2. 
Robot Group Size indicates the number of robots acting 
within the environment, and Food Amount is the number 
of food objects to be maintained. Active Time Unit 
indicates the total number of input and behavior cycles 
from each robot. Number of Block indicates the number of 
obstacles in the environment. 

 
Table 2. Parameters for simulation 

 
We have evaluated various values for particular 

parameters: Group Size, Food Amount and Number of 
Blocks. Figure. 8 shows a screen snapshot utilizing one 
set of values. By using the fitness according to each 

generation under the same conditions, our method is 
compared against the more traditional method of evolving 
a neural network (without a rulebase).  

In our implementation of the traditional evolutionary 
neural network, we used all of the bits for generating the 
neural network, instead of using some of them for creating 
rules. We found that, despite the fact that our model has 
fewer bits available for neural network construction, the 
average fitness of the gene pool is higher than for the 
traditional approach. Our method evolved more efficient 
robot behavior than did the simple evolutionary neural 
network. 

 

 
Figure 8.  An example simulation scenario 

 
5. Test cases 
 
We tested both the conventional evolutionary neural 
network method without classification rules, and our 
method which incorporates classification rules. Both used 
the same chromosome size and environment. The 
following are the results of comparisons on various test 
cases. 
 
5.1. Various numbers of blocks (Vaule#1 in Table 1) 
 

Figure 9 shows the maximum fitness for each 
generation when the number of obstacles is changed. In 
Figure 9(a) our method’s fitness goes up suddenly at 
around 300 generations, and begins to converge on 30000 
in about 600 generations while the simple method’s fitness 
initially converges on 15000 near generation 250. Figure 
9(b) and Figure 9(c) also show that our method converges 
with higher fitness values throughout the experiment. 

 
5.2 Various robot group sizes(Values#2 in Table 1) 
 

Figure 10 indicates the maximum fitness for generation 
in the case of changing the number of robots-10 and 15, 
respectively - under an environment with four obstacles. 
Figure 10(a) shows that when the number of robots is 10, 
our fitness converges around 12000 and the simple 
method around 9000. Figure 10(b) also shows that our 
method achieves higher fitness when the number of robots 
is increased to 15.  

Parameters Values #1 Values #2 Values #3 

1. Number of Block 0, 2 or 4 4 4 

2. Robot Group Size 20 10 or 15 20 

3. Food Amount 30 30 10 or 20 

Crossover Ratio 90% 90% 90% 

Environment Size 20 * 20 20*20 20*20 

Population Size 100 (10x10) 100 (10x10) 100 (10x10) 

Nest Size 2*2 2*2 2*2 

Rulebase Size 10 10 10 

Number of Sense 12 12 12 

Active Time Unit 100 100 100 

Mutation Ratio 0.05% 0.05% 0.05% 

)( points
1
�

=

n

i

iR



 
5.3 Various food amounts (Values #3 in Table 1) 

Figure 11 indicates the fitness by generations in case of 
changing Food Amount-20 and 10 respectively, under an 
environment with four obstacles. Our method converges 
with a few higher values although in Figure 11(b) the 
fitness values for both methods are similar. 

  
 

     
(a) Case of no blocks                  (b) Case of two blocks 

 

 
(c) Case of three blocks 

Figure 9.  Fitness for various numbers of blocks 
 

   
(a) Case of ten robots             (b) Case of fifteen robots 
Figure 10.  Fitness for various numbers of robots 

 

   
(a) Case of ten foods                (b) Case of twenty foods 

Figure 11.  Fitness for various food amounts 
 
6. Conclusion 
 

We simulated an environment in which a virtual robot 
was required to efficiently achieve a given task. The 
robot’s intelligent behavior was important in processing 
this task. Thus, we considered the knowledge 
representation for our robot’s behavior using a neural 

network and classification rules. Next, we suggested a 
model that evolves the robot’s knowledge using a genetic 
algorithm, and implemented a system to apply our idea. 
We verified that our model learned more quickly than the 
conventional method of evolving a neural network, for 
various cases. The learning speed and quality of our 
robots were superior and accomplished more efficiently 
their task of gathering food, presumably because of the 
way in which they stored their knowledge of intelligent 
behavior using classification rules. Our virtual robot 
works well for a variety of situations regardless of the 
number of robots, blocks, or food in our given 
environment 

In the future, our objective is to find out the learning 
model for the heterogeneous structure of the robot as well 
as the homogeneous one. 
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