
The Behavior Evolving Model and Application of Virtual Robots

 Suchul Hwang Kyungdal Cho V. Scott Gordon
Inha Tech. College Inha Tech College CSUS, Sacramento

253 Yonghyundong Namku 253 Yonghyundong Namku 6000 J Street
 Inchon, 402-752 Rep. of Korea Inchon, 402-752 Rep.of Korea Sacramento, CA 95819 USA

hwangs@ecs.csus.edu kdcho88@hotmail.net gordonvs@ecs.csus.edu

Abstract

We suggest a model that evolves the behavioral
knowledge of a virtual robot. The knowledge is
represented in classification rules and a neural network,
and is learned by a genetic algorithm. The model consists
of a virtual robot with behavior knowledge, an
environment that it moves in, and an evolution performer
that includes a genetic algorithm. We have also applied
our model to an environment where the robots gather
food into a nest. When comparing our model with the
conventional method on various test cases, our model
showed superior overall learning.

1. Introduction

The use of robots in order to perform tasks under a
dynamic and an informal environment has grown rapidly.
At the same time, many researchers have studied artificial
life in order to apply characteristics of ant behavior to
control robots or software agents [1][2]. AI methods exist
for representing the knowledge of a robot’s behavior, such
as evolving neural networks [3] and genetic programming
techniques [4]. But if the knowledge of a robot is
contained in rules or in a semantic network, a robot’s
response speed may suffer because the inference process
may be complicated. If the behavior of a robot is
controlled only by a neural network with a genetic
algorithm, learning speed may drop.

In this paper, we suggest a model that evolves the
virtual robot's behavior to accomplish a task more
efficiently and speedily than that of a conventional
evolving neural network. For this work, we combine the
classification rule with neural network, evolved using a
genetic algorithm. Our motivation is to test whether
including additional information on the chromosome, such
as classification rules for controlling robot’s behavior (in
addition to the neural network data) leads to more
effective problem solving. We construct a system to apply

our model and evaluate it, consisting of virtual robots that
have behavior knowledge represented by the classification
rule and neural network, the environment that robots move
in, and the evolution performer that includes the genetic
algorithm. In the virtual environment, robots with
intelligent behavior knowledge avoid obstacles and gather
foods into a nest. We compare our method with a
conventional evolutionary neural network approach using
the same conditions and fitness measures.

The next section briefly reviews artificial life, genetic
algorithms, classification rule, and an evolving neural
network approach related to our work. Section III
describes the suggested model and section IV introduces
the implementation of an environment for application and
reports on an experimental evaluation. Finally, section V
offers conclusions and future work.

2. Related work
2.1. Artificial life and genetic algorithm

Many researchers have studied the field of artificial life,
with the intention of interpreting characteristics of life and
applying them to engineering applications [5][6].
Artificial life uses a bottom-up method, which is opposite
that of conventional artificial intelligence. It generates
complex creative behaviors from simple behavior factors
of a lower level [7], and is the approach on which our
paper is based.

2.2. Genetic algorithm

Genetic algorithms are a search method that can be
used both for solving problems and for modeling
evolutionary systems [8]. The basic idea of a genetic
algorithm is simple. A population of candidate solutions is
created, and then the population is evolved with use of
various operators (such as selection, crossover, and
mutation). Natural selection is utilized through an
appropriate measure of fitness. There are many ways of
implementing this simple idea. We use the genetic
algorithm to evolve robot knowledge consisting of neural
network and classification rules.

2.3. Classification rules

In the late 1970’s, classifier systems were introduced in
which classification rules were learned using a genetic
algorithm [9]. Each string in the population is a set of
rules in this system. Each rule is generated with the
classifier in the condition of the rule and the message in
the conclusion. There are two approaches; the Michigan
[9] and Pittsburgh methods [10]. Our work is closest to
the Pittsburgh method because we generate a set of rules
and a neural network from chromosomes, and use these as
the behavior knowledge of a virtual robot. In the
Pittsburgh method, a robot’s entity is characterized not
with a single a rule, but with a set of rules. Thus, this
approach doesn’t evaluate each rule independently, but
instead produces sets of rules using the genetic algorithm,
and then calculates the fitness for each set. The details of
the classification rule will be shown in section 3.2

2.4. Evolving neural network

There are three ways that a genetic algorithm can be
used to evolve a neural network: (1) by evolving the
weights between nodes [11][12], (2) by generating the
structure of the neural network [13], and (3) to do both
[3]. We utilize the third method, in which the learning of
the link weights and the generation structure is mixed
within the same chromosome. In a neural network, the
connection between nodes is represented by a connection
descriptor that consists of both the linking weights and the
structure.

3. An evolving model for a virtual robot

In this section, we suggest an evolving model of
behavior for virtual robots, and describe the structure of
the model and the function of its components. We will
also show how to represent the knowledge for a robot’s
behavior, and how to train the robot.

3.1. Overview of evolving model

A structure of our model for evolving a robot’s

behavior is shown in Figure 1. It uses the method of
machine learning in which a human doesn’t provide prior
knowledge of the problem domain. Classification rules
and the neural network represent the knowledge of a
robot’s behavior. The knowledge is learned using the
genetic algorithm so that, over time, robots perform better
on their assigned task. The rule descriptor for
classification rules and the link descriptor for the neural
network are both represented as binary strings.

Figure 1. The structure of the behavior evolving model

An overview of the algorithm for evolutionary learning

that we suggest is shown in Figure 2. The algorithm
creates a set of genes (initially random) composed of
classification rules and neural networks, which are
analyzed by the interpreter and then applied to an
environment. The virtual robot then is executed for some
time within the environment, and its performance at
achieving the goal is evaluated. The genes that adapt best
to the environment are selected according to their fitness
for the next generation, producing new genes with
potentially better performance. As a result, after these
steps are repeated for several generations, virtual robots
will acquire behavior knowledge that enhances their
ability to achieve the goal.

3.2. The components of the model
3.2.1. Evolution performer Our evolution performer
includes the genetic algorithm, which generates and
evolves a robot’s characteristics. The chromosome of the
gene consists of the part of the rule descriptor related to
classification rules, the link descriptor for the neural
network, and meta-data including the number of rules and
the size of network.

A steady-state genetic algorithm, shown in Figure 2, is
used for the evolution of a robot’s knowledge in our
model, because the exact fitness of the strings is unknown,
and can only be estimated by testing the virtual robots.
The steady-state method replaces some - not all -
individuals of the current gene pool in order to produce
the next generation. That is, it initially creates many
genes, and then chooses excellent ones of those. A 2-
dimensional local tournament selection method is used for
selecting superior genes, in which a winner is chosen by
competing two neighboring random genes. After
crossover and mutation are applied and two new genes are
produced, they are substituted for losing genes from
another similar tournament.

Figure 2. Algorithm of behavior evolution

3.2.2. Classification rule and rulebase. Some of the
chromosomes generated by the evolution performer are
classification rules, and are stored in the rule base that
contains knowledge for the robot to utilize input signals
from the environment. Each rule is represented by if-then
as follows.

if s(t) then a(t)
 s(t) : input value at time t , s(t)

�
S

 a(t) : output value at time t, a(t) � A
 S : set of available inputs
 A : set of available outputs

There is a condition part consisting of {0,1,#}, and a

conclusion part consisting of {0,1} - where pound
symbol,#, means “don’t care”. If an input s(t)

�
S is

matched with a rule in the rule base, the rule is fired and a
consequence a(t) � A is run. All input values are in S �
{0,1,#}L , such that each member is described by a bit
string of length L.

The rule descriptor is used to build classification rules
from bit strings, or to match an input signal with the
condition part of rules in the rule base. An example of
transforming a bit string into a rule descriptor is shown in
Figure 3.

In Figure 1 the process by which the rule is fired is as
follows. First the input signal is compared by bit unit with
the conditions of the rules in the rule base. If a match is
found then the interpreter outputs 1, otherwise 0. For
example, if input value is “01001011” in Figure 3, the
result is “100” because only the first rule was matched.
The interpreter processes this result, in turn outputting the

conclusion part of any applicable rule, in order to produce
the robot’s behavior

Figure 3. An example of a rule descriptor

3.2.3. Neural network and its construction. The neural
network is generated by the genetic algorithm and is
initially random. For our virtual robots, the network
computes its output based on the information from
environment via input units, the result of fired rules, and
the content of memory. In our model, the neural network’s
genetic encoding, as described earlier, consists of three
parts: “from” for start node, “to” for end node, and
“weight” for link strength. In this way, the descriptor also
represents the state of links between nodes in a neural
network. If two links happen to contain identical ‘from’
and ‘to’ nodes, their weights are added. Figure 4 shows an
example of a neural network represented as a bit string
using link descriptors.

Figure 4. An example of link descriptors

Figure 5. Neural network architecture for robot

BehaviorEvolution()
{

Initialize 2D population of random bitstrings
for each generation
 {

pair1(a,b) := randomly selected pair of neighboring genes
 pair2(a,b) := randomly selected pair of neighboring genes
 pair3(a,b) := randomly selected pair of neighboring genes
 pair4(a,b) := randomly selected pair of neighboring genes
 for each pairX(a,b), (X=1..4)
 {

robots (X.a,X.b) := build rules and NN from genes(a,b)
 generate new environment (Food, Block, Nest)
 several copies of robot X.a into environment
 run environment and determine fitness(X.a)
 remove robots X.a and reset environment
 place several copies of robot X.b into environment
 run environment and determine fitness(X.b)
 }
 P1 := maximum fitness gene from pair1
 P2 := maximum fitness gene from pair2
 R1 := lowest fitness gene from pair3
 R2 := lowest fitness gene from pair4
 children := mutation(crossover(P1,P2))
 children replace R1,R2 in the population
 }

}

The particular neural network evolved in our
application is shown in Figure 5. There are 44 input units,
corresponding to: sensor inputs 1 through 20 (1 bit each),
results from rulebase (10 rules, 1 bit each), and 14 random
inputs. There are then 12 hidden units, and 7 output units
for generating the resulting output behavior, described in
section 4.2. (note: since there are a total of 44+12+7=63
units in the neural network, a node of the link descriptors
in our robot application require 6 bits each, rather than the
3 bits shown in the previous smaller example of Figure 4.)

3.2.4. Interpreter and virtual robot’s behavior. The
interpreter coordinates the components that contribute to
the robot knowledge. These include the rulebase (Rbase),
the neuralNetwork and Unit values (I: Input layer, H:
Hidden layer, O: Output layer) describing a particular
neural network, and the input/output with the
environment. The interpreter matches values from each
robot with rules in rulebase, then sends the fired rule and
the input value together to the neural network. The
resulting behavior information is used by the virtual
robots to accomplish their task efficiently. Figure 6 shows
an algorithm for the interpreter.

Figure 6. Interpreter algorithm

4. Application and evaluation

In order to show the efficacy of the suggested model,

we have implemented it and observed its behavior for
various scenarios. The details are shown in the following
subsection.

4.1. Virtual environment and robot entity

The virtual environment fort the robot’s task is a grid,
in which the length of each square is 1. Also on the grid is
Nest (robot’s nest), Food (robot’s food), and Block
(obstacles). In this space, robots perform their task, which
consists of gathering Food into Nest, using behavior
primitives shown in Table 1. The 7 behavior primitives
correspond to the 7 outputs from the neural network. Note
that two pheromone primitives are included for quickly
locating Food under the assumption that there is more
food on the paths robots pass through frequently. Some
limits are applied to the virtual environment and to the
robot’s behavior, as follows:

(1) It is impossible for two objects (such as Food and
Block) to occupy the same grid location at the
same time.

(2) Block can’t be moved to any other square.
(3) Only robots can change location of Food.
(4) Robot can only drop down Food into Nest. Putting

down Food to places other than Nest is not
allowed.

Table 1. Robot’s behavior primitives

Figure 7 shows our virtual robot with sensors of three

direction and arms.

Figure 7. The virtual robot

4.2. Rulebase and neural network

The condition part of each rule in the rulebase has 12
bit string values, because there are twelve binary values
coming from the sensors of each robot. The following rule
is an example we used for application.

If ######0##1#0 then 1 else 0

Each bit indicates whether there is food, robot, and/or

blocks in three directions (left, front, right) from the robot,
whether a robot is carrying food or is heading towards the
nest, and whether a robot’s current location is in fact the
nest. For example, the condition portion of the above rule
tests whether there is no block to the left of the robot, and
robot is carrying food, and the robot’s current location is
not the nest. If the sensors indicate that these conditions
are met, then the rule is fired.

The neural network includes an input layer that
receives the 12 bits of sensor information described
earlier, 8 bits of pheromone value (two types, 4 bits each),

Behavior primitives Meaning

Go Forward Move one grid step

Turn Left Turn left 90°

Turn Right Turn right 90°

Lift Up Lift up Food

Drop Down Drop down Food into Nest

Pheromone1 Spray P. on current location

Pheromone2 Spray P. on current location

Interpret(R,Rbase,neuralNetwork,I,H,O)
{
for each robot r ∈ R {

inputString = sense()
resultString = CRuleInterpret(InputString,Rbase)
result = neuralNetwork(inputString ∪ resultString,neuralNetwork,I,H,O)
perform(result,0)

}
}

in addition to the result values of the fired rules. There are
then twelve hidden nodes, and an output layer that
provides robots with commands to move, turn, lift up and
drop down. In our paper we use 10 classification rules,
and limit the number of neural network links to 512.

4.3. Fitness

Fitness plays an important role in selecting good genes
for producing the next generation. For fitness, we use the
sum of compensational values, which a robot acquires
through acting in the environment for a given time
according to the system clock and is expressed as follows:
(1) If a robot moves and there is Food in front adjacent

cell, the robot is given 1 point.
(2) If a robot lifts up Food, the robot is given 1 point.
(3) If a robot drops down Food into the Nest, the robot

is given 1000 points.

The fitness for the corresponding gene is then

calculated as the sum of the points acquired by each of
the n identical robots Ri:

 Fitness(gene) =

4.4. Experimental evaluation

Parameters used for simulation are shown in Table 2.
Robot Group Size indicates the number of robots acting
within the environment, and Food Amount is the number
of food objects to be maintained. Active Time Unit
indicates the total number of input and behavior cycles
from each robot. Number of Block indicates the number of
obstacles in the environment.

Table 2. Parameters for simulation

We have evaluated various values for particular

parameters: Group Size, Food Amount and Number of
Blocks. Figure. 8 shows a screen snapshot utilizing one
set of values. By using the fitness according to each

generation under the same conditions, our method is
compared against the more traditional method of evolving
a neural network (without a rulebase).

In our implementation of the traditional evolutionary
neural network, we used all of the bits for generating the
neural network, instead of using some of them for creating
rules. We found that, despite the fact that our model has
fewer bits available for neural network construction, the
average fitness of the gene pool is higher than for the
traditional approach. Our method evolved more efficient
robot behavior than did the simple evolutionary neural
network.

Figure 8. An example simulation scenario

5. Test cases

We tested both the conventional evolutionary neural
network method without classification rules, and our
method which incorporates classification rules. Both used
the same chromosome size and environment. The
following are the results of comparisons on various test
cases.

5.1. Various numbers of blocks (Vaule#1 in Table 1)

Figure 9 shows the maximum fitness for each
generation when the number of obstacles is changed. In
Figure 9(a) our method’s fitness goes up suddenly at
around 300 generations, and begins to converge on 30000
in about 600 generations while the simple method’s fitness
initially converges on 15000 near generation 250. Figure
9(b) and Figure 9(c) also show that our method converges
with higher fitness values throughout the experiment.

5.2 Various robot group sizes(Values#2 in Table 1)

Figure 10 indicates the maximum fitness for generation
in the case of changing the number of robots-10 and 15,
respectively - under an environment with four obstacles.
Figure 10(a) shows that when the number of robots is 10,
our fitness converges around 12000 and the simple
method around 9000. Figure 10(b) also shows that our
method achieves higher fitness when the number of robots
is increased to 15.

Parameters Values #1 Values #2 Values #3

1. Number of Block 0, 2 or 4 4 4

2. Robot Group Size 20 10 or 15 20

3. Food Amount 30 30 10 or 20

Crossover Ratio 90% 90% 90%

Environment Size 20 * 20 20*20 20*20

Population Size 100 (10x10) 100 (10x10) 100 (10x10)

Nest Size 2*2 2*2 2*2

Rulebase Size 10 10 10

Number of Sense 12 12 12

Active Time Unit 100 100 100

Mutation Ratio 0.05% 0.05% 0.05%

)(points
1
�

=

n

i

iR

5.3 Various food amounts (Values #3 in Table 1)

Figure 11 indicates the fitness by generations in case of
changing Food Amount-20 and 10 respectively, under an
environment with four obstacles. Our method converges
with a few higher values although in Figure 11(b) the
fitness values for both methods are similar.

(a) Case of no blocks (b) Case of two blocks

(c) Case of three blocks

Figure 9. Fitness for various numbers of blocks

(a) Case of ten robots (b) Case of fifteen robots
Figure 10. Fitness for various numbers of robots

(a) Case of ten foods (b) Case of twenty foods

Figure 11. Fitness for various food amounts

6. Conclusion

We simulated an environment in which a virtual robot
was required to efficiently achieve a given task. The
robot’s intelligent behavior was important in processing
this task. Thus, we considered the knowledge
representation for our robot’s behavior using a neural

network and classification rules. Next, we suggested a
model that evolves the robot’s knowledge using a genetic
algorithm, and implemented a system to apply our idea.
We verified that our model learned more quickly than the
conventional method of evolving a neural network, for
various cases. The learning speed and quality of our
robots were superior and accomplished more efficiently
their task of gathering food, presumably because of the
way in which they stored their knowledge of intelligent
behavior using classification rules. Our virtual robot
works well for a variety of situations regardless of the
number of robots, blocks, or food in our given
environment

In the future, our objective is to find out the learning
model for the heterogeneous structure of the robot as well
as the homogeneous one.

7. References

[1] Adami, C., “Introduction to Artificial Life”, Springer-
Verlag, 1998.
[2] Langton, C., “Artificial Life: An Introduction”, MIT Press,
1995.
[3] Collins, R.J., “Studies in Artificial Evolution”, Phd Thesis,
Dept. of Computer Science, Univ. of California, Los Angeles,
1992.
[4] Koza, J.R., “Genetic Programming: On the Programming of
Computers by Means of Natural Selection”, MIT Press, 1992.
[5] Brown, M., Smith, R., “Effective Use of Directional
Information in Multi-Objective Evolutionary Computation”,
Proc. of GECCO-2003, 2003.
[6] Spector, L., Klein, J., Perry, C., Feinstein, M., “Emergence
of Collective Behavior in Evolving Populations of Flying
Agents”, Proc. of GECCO-2003, 2003.
[7] Langton, C., “Artificial Life II”, Addison-Wesley, 1989.
[8] Forrest, S., “Genetic Algorithms: Principles of Natural
Selection Applied to Computation”, Science, Aug 13, 1993.
[9] Holland, J.H., Reitman, J.S., “Cognitive Systems Based on
Adaptive Algorithms”, Pattern-Directed Inference Systems,
Academic Press, NY, 1978.
[10] Smith, S.F., “A Learning System Based on Genetic
Adaptive Algorithms”, Ph.D. Thesis, Univ. of Pittsburgh, 1980.
[11] Montana, D., Davis, L., “Training Feedforward Neural
Networks Using Genetic Algorithms”, Proc. of IJCAI, 1989.
[12] Whitley, D., Hanson, T., “Optimizing Neural Networks
Using Faster, More Accurate Genetic Search”, Proc. of ICGA-
89, 1989.
[13] Miller, G., Todd, P., Hedge, S., “Designing Neural
Networks Using Genetic Algorithms,” Proc. of IJCAI, 1989.

