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Abstract 

Trappy minimax is a modification to minimax that attempts to identify and set traps in two-player 

strategy games. It defines a trap as a move that looks good at a shallow search depth, but is 

revealed to be in fact a bad move, when analyzed at a greater search depth. The algorithm 

utilizes information accumulated during iterative deepening, and then rewards moves that lead to 

traps. The reward mechanism often causes the computer to select moves that normal minimax 

considers inferior, because minimax assumes that the opponent always makes the best 

response, whereas trappy minimax identifies those inferior moves that an opponent might be 

tempted to play. The algorithm challenges the fundamental notion of “best move”, as shown in 

examples from actual games. Trappy minimax is tested in the game of chess by incorporating it 

into the Beowulf chess engine. The trappy version of Beowulf earned a significantly higher rating 

on ICC than did normal Beowulf, against human opponents, but not against other computers. The 

results illuminate a number of advantages for not always assuming best opponent response. 

Introduction 
 

At the core of nearly all computer board game play is the minimax algorithm. And at the core of 

minimax is the assumption that searching for the best available move necessitates assuming 

that the opponent will also make the best response. While there is no denying the competitive 

success of this tenet, it carries with it several implications deserving of further consideration. 

 

When humans play, we rarely limit our analysis to the best response. Rather, humans routinely 

try to trick the opponent into playing weak moves. In many cases we are willing to risk playing a 

slightly inferior move if we believe there is a good chance that the opponent will make the wrong 

reply and fall for a trap. Thus, human play includes a good deal of bluff that is inherently absent 

from minimax. A deeply-laid and difficult to navigate trap will never be set by minimax, if the 

perfectly-accurate response costs the computer one-tenth of a pawn according to the static 

evaluation function. In this sense, human play is a richer cornucopia of possibilities that 

encompasses not only the search for a perfect truth, but also other ways of extracting victory. 

 

An obvious example is when we are behind – i.e., when desperate circumstances dictate 

desperate measures. If we find ourselves behind by, say, a couple of pawns, we know that 

defeat is certain unless we get lucky. Knowing that, we humans will try everything in our power 

to increase the chance for that lucky break. When behind, there is little harm in sacrificing even 

more material if it sets some landmines for our opponent to navigate. Humans do this naturally, 

yet minimax will generally discard such moves as inferior, simply assuming that the opponent 

will not fall for the bait. 



Thus, despite the considerable advances in computer game play – to the point of utter 

dominance in chess – humans still bemoan that their play is still “computer-like”. A recent Andy 

Soltis Chess Life column highlights the startling lack of any apparent plan in many computer 

chess games, such that the very notion of planning in chess may in reality turn out to be a 

mirage [Sol13]. But there remains a strong sense that the human style of play remains 

fundamentally different than that of the computer, and that the difference is visible in the games 

themselves. And while the computer is the undeniable master of opportunity – if a victory is 

within its horizon, it will find it – minimax includes nothing to create such opportunities. 

 

Indeed, so ingrained is our trust in minimax, that we rarely explore the original question: what 

exactly is the “best move” in a given position?  Consider the following scenarios: 

 

(i) Players A and B are approaching the time control, and player A only has a few seconds left 

on his clock. Player B has two moves to choose from – the first leads to a series of captures 

with forced recaptures that lead to an even game. The second initiates a complex attack that 

requires pinpoint accuracy for player A to survive, but if he does, he will have a slightly 

better pawn structure. Given player A’s time pressure, many humans would consider the 

second plan to be the preferable one. Minimax will always favor the first move. 

 

(ii) Player A is behind by a piece, and player B is trying to steer the game into a decisive 

endgame. Player A has to choose between two moves: the first leads to an endgame in 

which he is still behind by a piece, but in a losing bishop-and-pawn endgame. The second 

leads to the sacrifice of a second piece, but the elimination of all of the pawns, such that 

player B would be required to execute the difficult bishop-and-knight mate in order to win. 

Many humans would make player B’s life as difficult as possible, and choose the second 

move. Minimax would always choose the first move because the static score is higher. 

 

(iii) Player A is about to be checkmated in at most 8 moves. He has several moves, all of which 

result in loss, given best play. One of the options leads to a loss in only 6 moves, but if the 

opponent doesn’t find the correct move, there is a trap and player A can win. Humans would 

recognize that if they are going to lose anyways, they might as well give the opponent the 

opportunity to mess up, and choose the 6-move loss because it includes a chance of victory. 

Minimax always chooses the 8-move loss because it is the slowest, even if it is also the 

easiest for the opponent to execute. 

 

(iv) Player A is a computer, and is playing against human player B. The two combatants are in 

an endgame, and the computer (player A) has analyzed every variation to completion. That 

is, the computer is working with perfect and complete information. Every move leads to a 

draw with best play. However, one of the moves requires the human to find 6 subtle moves 

in succession, two of which require the sacrifice of material, and any deviation from this 

sequence results in a victory for the computer. Humans would no doubt say that this is the 

best move for the computer to choose. But the computer would consider this move to be no 

better than any of its other possible moves, and thus would be unlikely to play it – even 

though it sees the variation that the human would have to find. 



 

Thus, it is argued herein that, while minimax succeeds in its quest for truth and purity, it can 

hardly be said to produce the “best” move in every case, even in the presence of an exhaustive 

search tree! This latter case gives rise to the observation that, while minimax in its current form 

fails to exploit options such as those listed above, the algorithm often does in fact traverse those 

options, and thus need only be modified slightly, into a framework that can reward them. 

 

Background 
 

The minimax algorithm is generally attributed to John Von Neumann in 1928 [vonN28], and its 

applicability for computer chess to Claude Shannon in 1950 [Shan50]. The optimization 

technique known as alpha-beta pruning was described in 1962 by Kotok [Kot62], allowing the 

algorithm to eliminate certain branches from consideration, speeding up the search without 

changing the result. Minimax with alpha-beta pruning has been used in most computer 

implementations of popular board games such as chess and checkers, and forms the basis of 

the search algorithms used in well-known competitive programs such as Deep Blue (for chess) 

[Hsu02], Chinook (for checkers) [Sch09], and Logistello (for Othello) [Bur97]. 

 

Various improvements to minimax have been developed. Most attempt to alter the ordering of 

generated moves in order to accelerate alpha-beta pruning [Sch89]. Others use game-

dependent knowledge to determine whether certain branches of the tree should be ignored, 

allowing for deeper search, or whether certain branches should be selected for deeper search. 

 

Iterative Deepening is when a minimax search of depth N is preceded by separate searches at 

depths 1, 2, etc. That is, a series of progressively deeper searches are performed, enabling 

minimax to search as deeply as it can in the time allotted, without knowing ahead of time how 

far ahead it has time to search. The results of the shallower searches can also used to help 

alpha-beta pruning work more effectively during deeper searches [Sch89]. Trappy minimax also 

uses iterative deepening to accumulate information on how strong a move may appear [GR06]. 

 

Efforts at modifying minimax so that it induces an opponent into making an error have focused 

on identifying an opponent model.  Pearl examined trap-setting in probabilistic imperfect-

information games from a statistical/probabilistic perspective [Pea84], although much of his 

work in this area centered around steering such search towards positions for which the resulting 

search trees would contain more perfect (i.e., less uncertain) information.  Parker et al. would 

later extend this work to more direct opponent traps, and dubbed the notion of a perfect 

opponent the paranoid assumption, found on one end of a spectrum ranging from paranoia to 

overconfidence [Par06]. Although still rooted in imperfect-information games (a perfect 

opponent is characterized as one who would always choose a move that “minimizes payoff”), 

the terminology is also suitable for perfect-information games. 

 

Circumstances similar to those described earlier, in which a player may reasonably adopt a 

technically “inferior” move, were identified and examined by Jansen [Jan90, Jan92].  



Specifically, he noted the following three original assumptions made by Shannon, that are 

“inconsistent with actual human game playing”: 

 the game-playing situation is symmetric, 

 the opponent has the same evaluation function and search strategy, and 

 a game is a sequence of moves, in each of which the goal is to find the move that leads 

to the highest possible value against best play. 

 

Jansen goes on to explore methods for relaxing those assumptions in the presence of an 

opponent model, leading to “speculative” play capable of increasing the game-theoretic value of 

a minimax search result.  That is, an agent’s knowledge about the fallibility of the opponent 

would enable the agent to evaluate the opponent’s probability of error.  Jansen also classifies 

various types of human errors, as well as various types of opponent models.  His experiments 

focused on games in which the tree can be searched to completion, such as found in a 

complete-information chess endgame database, and small random (probabilistic) games. 

 

Although Jansen’s experiments didn’t include generalization to full minimax for, say, a complete 

game of chess, he postulated that therein it might be less frequently admissable to make 

speculative mistakes, and instead be useful for breaking ties (such as when two potential moves 

return the same minimax score). He also suggests using how deep the opponent can search as 

one form of opponent model, and provides an example taken from a world championship 

(human) candidates match, with analysis by Deep Thought at varying depths [Jan92]. 

 

Carmel and Markovitch [CM95] extended Jansen’s ideas by implementing a more generalized 

variation of minimax called M*, in which a game-specific opponent model is incorporated into 

the search algorithm itself. M* allows minimax to consider whether an opponent is likely to make 

an inferior move, and to take better advantage of it. The authors also examined using M* to take 

advantage of opponents that search to a shallower depth, and thus, like the trappy minimax 

algorithm presented in this paper, M* uses search depth in its traps. 

 

 

Trappy Minimax 
 

Trappy minimax is a game-independent generalized extension of the minimax adversarial 

search algorithm that attempts to take advantage of human frailty. It was first described by 

Gordon and Reda [GR06], and tested in an Othello program named Desdemona. More recently 

it was incorporated by Fang et al [FCJ13] into the Chinese Chess program Xqwizard. Whereas 

minimax assumes best play by the opponent, trappy minimax tries to predict when an opponent 

might make a mistake by comparing the various scores returned through iterative-deepening. 

Sometimes it chooses a slightly inferior move, if there is an indication that the opponent may fall 

into a trap, and if the potential profit is sufficiently high. Desdemona achieved a higher rating 

against human opposition on Yahoo! Games when using the trappy algorithm than when it used 

standard minimax, despite incorporating no additional Othello knowledge, and in spite of 

frequently playing moves that, according to minimax, were objectively inferior. 



Definition of a Trap 

 

In the trappy minimax algorithm, a trap is a move that (1) looks good in the short term, but that 

(2) has bad consequences in the long term. In minimax terms, it is a move with a high 

evaluation for the opponent (high negative static score) if assessed at shallow search depths, 

and a low evaluation for the opponent (high positive static score) when assessed at the 

maximum search depth. A trap is thus a move with the property that a non-optimal opponent 

might be tricked into thinking it is good when in fact it is not. 

 

A computer program can set a trap by choosing a variation in which one of the opponent’s 

responses is an attractive move that has the above property of being a trap. The opponent may 

or may not then fall for the trap (i.e., play the trap move). 

 

Setting such a trap is only of practical benefit if the result of an opponent not falling for the trap 

is not too much worse than the evaluation of the move recommended by standard minimax. In 

other words, if the opponent does not fall for the trap, setting the trap which didn’t materialize 

should not yield an overly significant negative cost. A slight negative cost might be an 

acceptable tradeoff, however, and the degree of negativity permitted can be tuned to achieve a 

more or less speculative style of play. 

 

Although this definition of a trap does not require game-specific opponent modeling, by 

Jansen’s taxonomy it still relies on a sort of opponent model, in that it is possible to characterize 

the type(s) of opponent that are susceptible to this sort of trap. An opponent that performs a full-

width minimax search to a depth greater than the trappy minimax player would, for example, not 

fall for any such traps. Humans, however, are always susceptible to such traps, since they in 

general do not perform full-width search, and do not consider every variation to a uniform depth. 

 

The Trappy Minimax Algorithm 

 

The trappy minimax algorithm can be used both to (a) identify traps, and (b) set traps. While a 

system that simply identifies traps could be useful in building an automated game annotator, our 

goal is to build a system that sets traps. Thus we examine both identifying and setting traps. 

 

Identifying Traps 

 

Recalling that our definition of a trap is based on the differences in a move’s evaluation at 

various depths of search, we can utilize the iterative deepening already present in most minimax 

implementations to accumulate the data that is needed for those various search depths. Thus, it 

turns out that accumulating the data needed for evaluating traps is inexpensive, and as we shall 

see, alpha-beta pruning can still be employed at each ply. 

 

Identifying traps, or more specifically determining whether a particular move contains a trap, is 

accomplished by accumulating a vector of evaluations for that move. The vector contains all of 



the minimax evaluations calculated for that move over the course of iterative deepening. That is, 

the first element of the vector is the evaluation for that move after a 2-ply search, the second 

element is the evaluation after a 3-ply search, etc. Since our goal is to set traps, our version of 

trappy minimax creates these vectors for every possible opponent move. When the vector 

contains values that start negative and become positive, the algorithm has identified a trap. 

 

Consider for example the following famous sequence in the Cambridge Springs Defense: 

 

White: human, Black: computer 

1. d4 d5, 2. c4 e6, 3. Nc3 Nf6, 4. Bg5 

 

 
 

The computer now has several options. For purposes of this discussion, let us consider just the 

following two:  4…Be7, and 4…Nbd7.  Both are likely to have very similar evaluations under 

standard minimax. However, the latter (4…Nbd7) contains a trap. At first glance, 4…Nbd7 looks 

like it costs black a pawn, because white can play 5. cxd5 exd5, 6. Nxd5 and black’s knight 

seemingly cannot recapture because it is pinned. However, deeper search reveals that the pin 

is a mirage, because after 6... Nxd5, 7. Bxd8 Bb4+ white is forced to block the check with the 

queen, after which he will be not ahead by a pawn, but behind by a knight. 

 

The trap is exposed by trappy minimax in one of the vectors built by iterative deepening: 

 

4… Nbd7,  5.cxd5 

 Search depth vector (comments) 

 1-ply search (after …exd5) 0.0 evaluation is even 

 2-ply search (after Nxd5) -1.0 human ahead by 1 pawn 

 3-ply search (after …Nxd5) +2.0 computer ahead by 2 pawns 

 4-ply search (after Bxd8) -1.0 human ahead by 1 pawn (6…Nxd5 rejected) 

 5-ply search (after …Bb4) -1.0 human ahead by 1 pawn (6…Nxd5 rejected) 

 6-ply search (after Qd2) -1.0 human ahead by 1 pawn (6…Nxd5 rejected) 

 7-ply search (after …Bxd2) +2.0 computer ahead by 2 pawns 

 



At a depth of 4, 5, or 6 plies, an opposing system would conclude that 6…Nxd5 loses a queen, 

and would therefore believe that the best black could do is to concede the loss of a pawn.  

6…Nxd5 is only revealed as black’s best move after a 7-ply search. 

 

The vector values described earlier and listed above are contained in a set of floating point 

arrays, one per opponent’s legal move, indexed by search depth. Any opponent searching 6 

fixed plies or less would conclude that 5. cxd5 wins a pawn. In this example, such a system 

would not yet have completely fallen for the trap, since it is 6. Nxd5 that is the losing move. 

However, an opponent searching 4 plies or less would fall for that too. So more precisely, trappy 

minimax reveals that 4…Nbd7 contains a trap that the opponent might miss, and therefore 

might select his response in the absence of this important information. 

 

Arguably stronger moves for the opponent (rather than 5. cxd5) are 5. e3 or 5. Nf3, which retain 

tension in the center. By choosing 4… Nbd7, black tempts white to select cxd5 for the wrong 

reason, and possibly fall for the even worse trap of subsequently capturing the second d-pawn. 

 

Contrast the above example with the similar line after 4… Be7.  With the pin on black’s knight 

removed, there is no similar trap for white to navigate.  A variety of moves would be considered 

by the opponent, including the same ones mentioned previously (5. cxd5, 5. e3, or 5. Nf3 for 

examples). None of them contain traps, and so even a 4 or 5 ply engine would likely choose 

amongst these alternatives strictly on the less volatile basis of positional static evaluation. That 

is, ordinary minimax would not consider the merit of 4… Nbd7 as a trap. 

 

In summary, trappy minimax may choose to set a trap by playing 4…Nbd7, whereas standard 

minimax would assume that any opponent would reject 5. Nxd5, and would differentiate 

4…Nbd7 and 4…Be7 solely on the differences in their positional static evaluation. 

 

Setting Traps 

 

Having identified that 4…Nbd7 contains a trap (and 4…Be7 doesn’t), trappy minimax must 

evaluate the trap to determine whether it is worth setting. A trap is evaluated using three factors: 

 

● How likely is it that the opponent will fall for the trap? 

● What is the gain to the computer if the opponent falls for the trap? 

● What is the cost to the computer if the opponent doesn’t fall for the trap? 

 

Trappy minimax adjusts its move selection criteria by assessing the quality of traps contained 

within each of its move options, and adding bonus points to their evaluations through a simple 

(and tunable) risk/benefit analysis. There are a number of ways to analyze the set of vectors in 

order to assess the quality of the traps. In Desdemona, three different methods were used: 

 

 1. calculating the median of the evaluations at all but the maximum depth, 

 2. using the best evaluation for the opponent among the shallower evaluations, and 

 3. using only the evaluation at MaxDepth-1. 



Methods 1 and 2 were directed towards human opponents, while the method 3 was targetted at 

computer opponents known to be using the minimax algorithm either at a shallower depth (up to 

MaxDepth-2), or selective search. (The limit of method 3’s applicability to opposing minimax 

agents searching at most MaxDepth-2 is also mentioned by Jensen [Jen90].) 

 

Two factors are then determined: trappiness, and profitability. Trappiness is based on the 

number of plies separating a high negative score (shallow) and the actual positive score (deep). 

Trappiness thus attempts to measure the likelihood that the opponent could miss the trap. 

Profitability is the gain to the program if the opponent falls for the trap. Trappiness and 

profitability are both factored into the evaluation of each possible computer move, along with the 

standard minimax evaluation. The resulting trappy minimax algorithm is shown in Figure 1. 

 
 

TrappyMinimax(board,maxdepth) 

best, rawEval, bestTrapQuality = -∞ 

{ For each move 

 { make move on board 

  for each opponent response 

  { scores[maxdepth] := -Negamax(board,maxdepth) 

   if (scores[maxdepth] > rawEval) 

    rawEval := scores[maxdepth] 

  } 

  for each opponent response 

   for d := 2 to maxdepth-1 

    scores[d] := -Negamax(board,d) 

  Tfactor := Trappiness(scores[]) 

  profit := scores[maxdepth]-rawEval 

  trapQuality := profit * Tfactor 

  if (trapQuality > bestTrapQuality) 

   bestTrapQuality := trapQuality 

  adjEval := rawEval + scale(bestTrapQuality) 

  if (adjEval > best) 

best:=adjEval 

  retract move from board 

 } 

 return(best) 

} 

 

Figure 1 — Trappy Minimax in Desdemona 

 

Desdemona was tested both by playing it against itself in various configurations, and by playing 

against humans in Yahoo! Games (50 Othello games against opponents using standard 

minimax, and 50 games using trappy minimax). In summary, the results were as follows [GR06]: 

 The trappy algorithm was better able to capitalize on weaker computer opposition than 

standard minimax. In 67% of the cases, using the trappy algorithm enabled Desdemona 

to achieve a better final score than when standard minimax was used. 

 Desdemona achieved a slightly higher rating against human opposition when using the 

trappy algorithm than when it used standard minimax (1702 versus 1680 Elo). 

 Desdemona’s occasional deliberate choice of a slightly inferior move, in the interests of 

setting a trap, caused it to perform slightly worse against strong computer opposition. 



Trappy Minimax in Chess 
 

We tested the trappy minimax algorithm as applied to the game of chess, by incorporating 

trappy minimax into the existing Beowulf chess engine. The resulting program was dubbed 

Trappy Beowulf. We tested Trappy Beowulf by comparing its performance and that of standard 

Beowulf, with both competing against a variety of rated human opponents on ICC (Internet 

Chess Club) [ICC14]. Both versions were configured equally in all other respects. 

 

The ChessBrain/Beowulf Engine 

 

The Beowulf chess engine is an open-source International Master strength engine that was 

originally developed with the aim of providing a strong, well-tested implementation of common 

chess-playing heuristics and algorithms as source material for research and recreational 

purposes. It has provided the core for several engines that have built upon the existing code in 

order to experiment with new or unusual tree-search algorithms. Beowulf has also been adapted 

as part of the ChessBrain project [Fra06], which gained the world record for the largest-ever 

networked chess computer. It provides an ideal starting point for the present research in Trappy 

Minimax, as the time-consuming process of implementing well-known and thoroughly-studied 

techniques for chess algorithms has already been completed and known to be. Thus we could 

skip directly to the testing of trappy minimax. 

 

At its core, Beowulf uses a bitboard representation, storing any board position as a series of 64-

bit values. This is a widely-used technique, the advantage of which being that it allows for rapid 

manipulation and examination of the board state via boolean algebra, with a minimum of 

looping, branching and array manipulation. The core search algorithms implemented in Beowulf 

follow standard practices, with a core negamax search extended by a variety of safe and unsafe 

heuristics. Safe heuristics are those that are guaranteed to preserve the theoretical minimax 

values for any search tree, and prune out branches that are analytically incapable of affecting 

the result. Unsafe heuristics, such as futility search and razoring [Hei99] offer search tree 

reduction at the expense of abandoning theoretical correctness, and relying on the low 

likelihood of pruning branches that might have had an effect on the final result. 

 

We retained most of the Beowulf engine as-is, simply adding the option for trappy minimax and 

the resulting periodic bonus points to be added to the score of moves deemed to set traps. We 

also disabled Beowulf’s opening book, to maximize the algorithm’s exposure during all phases 

of game play (i.e., so that trappy minimax is also used during the opening stage). 

 

Alpha-Beta Pruning in Trappy Beowulf 

 

Our adaptation of trappy minimax in Beowulf includes an improved handling of alpha-beta 

pruning compared with previous trappy minimax implementations. 

 



As described previously, the trappy minimax algorithm accumulates evaluation scores for each 

move, for each level of depth-limited searches during iterative deepening search. It is possible, 

however, that in the presence of alpha-beta pruning, a particular move was never actually 

considered in one or more of the searches, due to standard alpha-beta cutoffs. The trappy 

minimax algorithm thus would not be able to identify traps involving moves that were cut. 

 

The solution used in previous implementations of trappy minimax (including in Desdemona) was 

to disable alpha-beta pruning at ply #2, so that all moves on that ply have scores recorded at 

every depth. This provides a simple mechanism for trappy minimax to consider every possible 

human response as a potential trap move. However, it incurs a significant performance penalty 

for the program, because prunes at early plies result in the most time-savings. Furthermore, this 

approach only allows traps to be identified at the topmost ply (for example, it would miss the 

Cambridge Springs example described earlier). 

 

Trappy Beowulf uses an improved adaptation of trappy minimax that does not incur these 

problems. The revised method keeps track of which moves have been searched at each level 

by marking them during the search, and then takes this information into account when 

identifying traps. In particular, as iterative deepening proceeds, and scores are returned from 

iterative deepening, alpha-beta pruning can produce “holes” in the score vectors built by trappy 

minimax. Trappy Beowulf fills in those holes with results from other searches. Specifically, when 

considering a certain trap candidate move that was pruned when searching to depth N, Trappy 

Beowulf substitutes in the value of the move’s evaluation when searched to depth N+1. Using 

this pattern, it fills in all missing values before searching the vectors for potential traps. 

 

The rationale for this method is that a value returned from a search of depth N+1 is more 

accurate than a value returned from a search of depth N.  Because these scores are used to try 

and trick the opponent, using a value from a deeper search is, at worst, overestimating the 

opponent’s skill. In the worst-case scenario, when a given move has not been considered at any 

depth except the current depth, that score will be copied to all previous depths, no trap will be 

identified, and trappy minimax will behave like ordinary minimax.  

 

Thus, Trappy Beowulf’s implementation improves previous versions of trappy minimax in two 

important ways: (1) if a certain move was evaluated in some searches but skipped in others due 

to pruning, the move could still be identified as a trap based on the partial information that was 

recorded; (2) since alpha beta pruning is never disabled, no performance penalty is incurred. 

Experimental results 
 

We compared the performance of Trappy Beowulf against that of the original Beowulf program. 

As expected, when the two programs are pitted directly against each other, the original program 

is usually able to beat the modified (trappy) version. This was the expected result and is 

consistent with earlier findings, because trappy minimax relies on an opponent that does not 

perform a comparable full-width search – an opponent that searches every variation in which 

the traps appear will not fall for them. 



Of greater interest is how each version performs against human opposition or other selective 

search agents, as that is the “opponent model” specifically targetted by the trappy algorithm. To 

do this, we entered both the trappy and original versions of Beowulf in ranked blitz matches on 

the Internet Chess Club (ICC), playing against human players. Both programs played against a 

variety of human players on ICC over the course of several weeks. To control for any residual 

discrepancies in runtime performance between the two implementations, both were limited to a 

maximum search depth of eight plies. Additionally, both programs did not use an opening book. 

 

We expected Trappy Beowulf to perform better against humans on ICC than ordinary Beowulf. 

This was confirmed by the experiment: after playing 30 ranked blitz matches each against 

human opponents, regular Beowulf was rated 2262, and Trappy Beowulf was rated 2440.1 

 

Data collected for Trappy Beowulf’s games revealed that it frequently played moves that it knew 

to be non-optimal in order to set traps. On average it intentionally played a “non-optimal” move 

once for every four “optimal” moves that it played. Each trappy minimax search finds hundreds 

of potential traps, although most are very small traps found in the deeper parts of a search. 

 

Examples of Traps set During Play 

 

Besides the Cambridge Springs example described earlier (which Trappy Beowulf identifies and 

sets), Trappy Beowulf sets a variety of types of traps over the course of a game. The traps are 

often subtle or involve the potential win of a small positional gain. They also may involve trap 

moves several plies deep, and thus may never manifest in an actual occuring board position. 

However, they also can be tactically dangerous for the opponent, with potential gains for the 

computer should the opponent misstep. 

 

Consider the following position that occurred during one of Trappy Beowulf’s games: 

Black (human) to move 

 

                                                           
1
 As an aside, we were surprised that such ratings could be achieved without benefit of an opening book. 



This is a tactically complex position with numerous open lines, pins, and pieces being 

threatened. Black can either retreat the threatened b4 bishop by playing 1…Ba5, or pin the 

attacking pawn by 1…Qa4 or 1…Qa6.  In fact, Trappy Beowulf has just set a trap, and its 

analysis of the optimal continuations after each of those three possible moves is: 

 

1. . . . Ba5 

2. e4 Qa6 

3. Qf6 Ba4 

4. Rb2 Re6 

5. Qh4 Bc3 

6. Ng5 h5 

7. Nxe6 Bxb2 

8. Rb1 Be8 

9. Rxb2 Qxa3 

  (-64) 

 

1. . . . Qa4 

2.  Ng5 Bd2 

3.  Be4 h6 

4.  Bxa8 hxg5 

5.  Bd5 Bxe3+ 

6.  Rxe3 Rxe3 

7.  Bxf7+ Kh7 

8.  Rf1 Be8 

9.  Qd2 Bxf7 

   (-64) 

 

1.    . . . Qa6 

2. Ng5 Ba5 

3. Be4 Ra7 

4. Nxf7 Kxf7 

5. Rf1+ Bf5 

6. Bd5+ Re6 

7. e4 Ke8 

8. Qh8+ Kd7 

9. exf5 Re7 

  (-27)

(Negative scores are favorable for the human opponent) 

The relevent portion of the iterative deepening vector for 1…Qa6  is as follows: 

 
  -72 -53 -53 -53 -51 -27 
 

Trappy Beowulf knows that it is behind, and has created a position in which the human has two 

options, 1…Ba5 and 1…Qa4, that both lead to excellent positions. However, the move 1…Qa6  

appears at shallower search depths to be an even better choice. It is not until six plies deeper 

that it is revealed to reverse much of the human’s advantage. In this case, 1…Qa6 looks good 

in that it retains the option of B(d7)-a4, it turns out that white’s 4. Nxf7 maneuver succeeds after 

1…Qa6.  If the trap works and the human plays 1…Qa6, Trappy Beowulf is back in the game. 

 

In some cases, Trappy Beowulf incorrectly considers “traps” that humans would be unlikely to 

fall for. That is, there are some cases in which the vectors appear to indicate a trap, but in reality 

the trap positions simply aren’t appealing, or are byproducts of the horizon effect. For example: 

 

White (Trappy Beowulf) to move: 

 
 



A typical move selected by standard minimax for the computer (white) is 1. h3. Trappy Beowulf, 

however, would consider playing 1. g5, because it believes that it sets a trap. Its analysis 

indicates that the correct human response to 1.g5 is 1…Nd7, but that the opponent might be 

lured into mistakenly chosing to play 1…c5 instead. In this case, 1…c5 received a reasonable 

evaluation from the opponent’s perspective at a five level deep search, and bad evaluation at a 

six level deep search. Beowulf’s analysis of each option is interesting: 

 

If Beowulf were to choose the “correct” option of 1.h3, the predicted optimal play that 

follows is:  1….Nh7 2. f4 Bxe5 3. dxe5 Qd7 4. f5 Ng5 5. e6 Qd6 6. Qg2 with a score 

of +1.24 for Beowulf. This is a nearly even score, i.e., only a fraction of a pawn (by 

Beowulf’s numeric scale). 

 

If Beowulf instead chooses to set the “trap” by playing 1.g5, the predicted best line of 

play (if the human doesn’t fall for the trap) is 1…Nd7 2. Nf3 Bb7 3. a4 c5 4. dxc5 

Qxc5 5. Qd3 Qc6 6. Nd4 with a score of -0.33, also nearly even with Beowulf down 

by a small fraction of a pawn. 

 

If Beowulf sets the “trap” by playing 1.g5, and the human falls for the trap by playing 

1…c5, the predicted optimal result that follows is 1…c5 2. gxf6 exf6 3. Nf3 cxd4 4. 

Rxd4 c6 5. a4 Qc5 6. b4 with a score of +2.96 for Beowulf, a clear edge.  Thus, the 

opponent falling for the trap puts the computer ahead by 2.96, while if the opponent 

sees through the trap the computer is behind by 0.33. In comparison, if the computer 

did not set the trap and both the computer and opponent played as ordinary minimax 

would predict, the computer would be ahead by 1.24. 

 

Whether the computer would actually choose to set this false trap or not depends on the way it 

is configured. For example, if the scaling factor was tuned to be more permissive in setting 

traps, the computer may be more willing to set risky traps. Unlike this trap, most traps identified 

by Trappy Beowulf are deep and comparatively low profit and low risk. 

 

Of course, in this case, this particular trap is actually a mirage. It is unlikely that any human 

player would choose 1…c5, simply because the sequence of captures along the a1-h8 diagonal 

are clearly in white’s favor. 1…c5 is not an appealing move, and it is likely that the iterative 

deepening vectors in this case are suffering from the horizon effect and making 1…c5 seem 

more appealing to Trappy Beowulf than it actually would be to even an amateur level human. 

Other Observations 

Most traps set by Trappy Beowulf involve small risk and small gains. Over the course of a 

typical 8-ply search, it identifies on average about 80 traps that it could potentially set. In the 

configuration tested on ICC, it chose a “non-optimal” move about 25% of the time. The majority 

(about 65%) of traps were set during the middle game (after move 10 and before move 35), and 

very few were set after move 35 (about 3%). 

 



The trappy minimax algorithm allows for different behavior according to tuning and 

implementation, and the goal of Trappy Beowulf was to implement it in a way that was 

reasonably conservative but still able to set traps. Alternate implementations of trappy minimax 

could focus more on risk-taking, or put less emphasis on traps and play more conservatively. 

 

Despite Trappy Beowulf frequently playing moves that it knows to be inferior, and despite the 

observation that some of the traps it sets are unlikely for humans to fall into, it still performs at a 

higher level against humans than standard minimax. This suggests that, over the span of a 

game, humans are sufficiently likely to fall for enough of the traps to result in a net gain. 

Conclusion 

Unlike computers, when humans play strategy games they do not always assume best play by 

their opponent. Rather, humans try to steer the game into positions where the opponent might 

play a bad move. Standard minimax includes no mechanism for such a strategy, and we 

suggest that this is one of the stylistic differences between human and computer play. 

Trappy Minimax is an extension to minimax that extracts information during iterative deepening 

to identify potential traps that the computer could set, even if they involve some risk. It assumes 

only a very rudimentary game-independent opponent model; that is, it assumes the opponent is 

not searching full-width to a greater depth than itself. Thus it is most effective against humans, 

and against computers employing either shallower search, or selective search. 

We tested the algorithm by creating a version of the Beowulf chess engine that incorporates 

Trappy Minimax, and the resulting Trappy Beowulf significantly outperformed standard Beowulf 

on ICC against human opposition, despite losing head-to-head against standard Beowulf. The 

results corroborate those previously observed for Othello.  We also improved the handling of 

alpha-beta pruning, resulting in better performance and better identification of potential traps 

than in previous implementations of trappy minimax. 

Trappy Beowulf successfully utilized non-optimal “speculative” moves about 25% of the time. 

This contradicts Jensen’s suggestion that in complete games such “mistakes” would not 

frequently be useful, but supports his idea that considering various search depths is useful. 

Trappy Minimax is unlikely to help an elite chess program garner a higher rating in today’s 

computer-vs.-computer competitions. However, it has potential application in other aspects of 

two-player games, such as: (1) games in which programs do poorly against humans such as 

Go, (2) building more human-like computer game-playing programs, and (3) building more 

insightful game annotation tools. 

Finally, the work gives emprical credence to rejecting the long-held notion that “best move” must 

necessarily be defined under the assumption of best response from the opponent. We 

described several situations wherein most experts would agree that the best choice would be 

one based on a non-optimal opponent response. The competitive results of Trappy Beowulf 

confirms the practicality of strategically relaxing the assumption in adversarial search. 
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