
CSc 165

Computer Game Architecture

03 - Fundamentals of

3D Systems

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

2

3D Coordinate Systems

Points can be represented in homogeneous form:

P = [x y z 1]

Right-handed Coordinate SystemLeft-handed Coordinate System

X

Y

Z

P (x,y,z)

X

Y

Z

P (x,y,z)

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

3

“Synthetic Camera” Paradigm

Eye (camera)

Y

Z

“View Volume”

“Projection Plane”

X

“Near Clipping Plane”

“Far Clipping Plane”

World Objects

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

4

The “UVN” Camera

Two important camera attributes:

▪ Location

▪ Orientation of UVN axes

Note the UVN coordinate system is left-handed

U

V

N

+ yaw
(“azimuth”)

+ pitch
(“colatitude” or “elevation”)

+ roll (“up”)

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

5

Generalized Camera Control

Player controls position & orientation
▪ “World” points must be converted to “camera” points

▪ Game engine should handle this (it’s game-independent)

Yw

Zw

Xw

U

V

N
Line of

sight

World point

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

Additional Camera Settings

Znear

U

V

N

Zfar

Field of View (FOV)

angle in Y

Height

Width

“Aspect Ratio”
=

width / height

6

FOVY, Aspect, Near & Far (Clipping)

▪ Controls “projection” onto 2D plane (& screen)

▪ Again, game engine should handle details

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

Default Camera Values

• Loc = [0 0 0], looking down negative Z

• V = Y, U = X, N = -Z

• fovY = 60°, aspect=1, near=0.01, far=1000

7

X

Y

Z

V

U

N

1000

60°

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

8

TAGE Camera/Display Class Structure

RenderSystem

GameObject

Viewport

Camera

ObjectShape

Engine

*
*

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

9

TAGE’s Camera class

public class Camera

{

private Vector3f u, v, n, location;

//modify the camera’s location/orientation (note that it is the user’s

//responsibility to insure the camera axes remain mutually perpendicular)

public void setLocation(Vector3f l) {...}

public void setU(Vector3f newU) {...}

public void setV(Vector3f newV) {...}

public void setN(Vector3f newN) {...}

public Vector3f getLocation() {...}

public Vector3f getU() {...}

public Vector3f getV() {...}

public Vector3f getN() {...}

public void lookAt(Vector3f target) {...}

public void lookAt(GameObject go) {...}

public void lookAt(float x, float y, float z) {...}

protected Matrix4f getViewMatrix() {...}

}

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

Camera Manipulation

example: “Move Forward” ==

change location along the view direction

10

Y

Z

X

CurLoc

NewLoc

ViewDirVector (N)

V

U

CurLoc As

Vector

NewLoc = CurrentLoc +

(ViewDirVector * moveAmount)

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

Camera Manipulation

example: “RotateLeft” == (yaw left)

rotate U and N around the V axis

11

Y

Z

X

CurLoc

ViewDirVector (N)

VerticalAxis (V)

SideAxis (U)

NewU = Rotate(U,V,amt)

NewN = Rotate(N,V,amt)

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

12

Defining Simple 3D Models

V0 = (0, 1, 0)

Color = red

V3 = (1, -1, -1)

Color = yellow

V2 = (1, -1, 1)

Color = blue

V1 = (-1, -1, 1)

Color = green

X

Y

Z

A 2x2x2 “Pyramid” Centered At The Origin

V4 = (-1, -1, -1)

Color = magenta

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

Rasterization

13

“Scan lines”

(pixel raster

rows)

Output

Vertex 0
Output

Vertex 1

Output Vertex 2

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

rasterization == interpolation

14

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

15

Pyramid Data Structure
(non-indexed)

X Y Z

0 0 1 0

1 -1 -1 1

2 1 -1 1

3 0 1 0

4 1 -1 -1

Vertices

0 0 1 2

1 3 4 5

2 6 7 8

3 9 10 11

4 12 13 14

5 15 16 17

Triangles

Geometry

Indexes

one “vertex”
one “vertex index”

etc…

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

16

Pyramid Data Structure
(indexed)

X Y Z

0 0 1 0

1 -1 -1 1

2 1 -1 1

3 1 -1 -1

4 -1 -1 -1

Vertices

0 0 1 2

1 0 2 3

2 0 3 4

3 0 4 1

4 1 4 2

5 4 3 2

Triangles

Geometry

Indexes

one “vertex”
one “vertex index”

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

17

The Graphics “Pipeline”

Vertex

Processing

(GLSL)

Primitive

Assembly
Rasterization

Fragment

(“pixel”)

Processing
(GLSL)

Fragment

Testing

(Blending, HSR,
etc.)

Frame Buffer

(Memory)

Display

Primitive

Processing

(Projection,
Clipping)

Graphics Card

• Implemented by the combination of the graphics driver (software),

and graphics (hardware) card

• Modern pipelines are “shader-based”, meaning that the rendering

code resides on the graphics card (for OpenGL, written in GLSL)

Vertices

A
p

p
li
c
a

ti
o

n
 C

o
d

e

G
ra

p
h

ic
s
 A

P
I

(O
p
e
n
G

L
 o

r
D

ir
e
c
tX

)

Other Data

“Client Side” “Server Side”

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

18

3D Transformations

Needed for a wide variety of operations:

▪ Modeling

▪ Positioning & orienting objects in the “3D virtual world”

▪ Camera positioning (“viewing”)

▪ Creating the 2D screen view of the 3D world view

(“projection”)

▪ Making objects move, grow, spin, fly, etc.

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

19

Translation (column-major form):

1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1

*=

(x+Tx)

(y+Ty)

(z+Tz)

1

x

y

z

1

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

20

Scaling (column-major form):

Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1

*=

(x*Sx)

(y*Sy)

(z*Sz)

1

x

y

z

1

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

21

3D Rotation

• Recall 2D rotations can be “about any point”

o For simplicity we define only 2D rotation “about the origin”

o Other rotations require translation to/from the origin

• Similarly, 3D rotations can be “about any line”
(any “axis of rotation”) :

Y

Z

X

Arbitrary

Point

“Axis of

Rotation”

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

22

Euler’s Theorem

“Any rotation (or sequence of rotations) about a point is
equivalent to a single rotation about some axis through
that point.” [Leonard Euler, 1707-1783]

This is equivalent to saying:

Rotation about an arbitrary line through the origin can be
accomplished by an equivalent set of rotations about the
X, Y, and Z axes.

Thus we can rotate about an arbitrary axis as follows:

1. Translate the axis so it goes through the origin,

2. Rotate by the appropriate “Euler angles” about X, Y, and Z, and

3. “Undo” the translation

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

23

Visualizing Euler’s Theorem

X

Y

Z

Axis of RotationDesired point

rotation

“Euler angle” rotations to

accomplish desired rotation

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

24

3D Rotation Transforms

Rotation about X by θ:

X

Y

Z

1

=

X’

Y’

Z’

1

1 0 0 0

0 cos θ -sin θ 0

0 sin θ cos θ 0

0 0 0 1

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

25

Rotation about Y by θ:

X

Y

Z

1

=

X’

Y’

Z’

1

cos θ 0 sin θ 0

0 1 0 0

-sin θ 0 cos θ 0

0 0 0 1

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

26

Rotation about Z by θ:

X

Y

Z

1

=

X’

Y’

Z’

1

cos θ -sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

27

Rotation in Angle/Axis Form

Rotation Axis = [X Y Z]

Rotation

Angle *

X
Z

Y

* Positive rotation = CCW as seen from vector (axis)

head, looking toward tail at origin (right hand rule)

rotate(60, x, y, z)

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

Representing Transforms

JOML (“Java OpenGL Math Library”)

▪ Class Matrix4f : a 4x4 (“3D”) matrix

Methods for specifying translation, rotation, & scaling,

obtaining transpose and inverse, etc.

Similar to Java’s AffineTransform (but 3D)

▪ Class Vector4f : a 4-element (“3D”) vector

Methods for most common vector operations: add,

dot- and cross-product, magnitude, normalize…

Useful for representing, for example, a rotation axis

28

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

Game Objects (a.k.a. “scene nodes”)
Every object in a scene is an instance of GameObject,

which provides translate, rotate, and scale matrices.

29

Apply the specified

transform to the local
matrix

GameObject

-localTranslation : Matrix4f

-localRotation : Matrix4f

etc...

+ setLocalTranslation(Matrix4f m)

+ setLocalRotation(Matrix4f m)

etc...

ObjShape TextureImage RenderStates

*

(parent)

(children)

GameObjects form a tree called a “scene graph”.

This facilitates grouping objects, and building hierarchical

objects and systems.

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

30

“Perspective” matrix

q = 1 / tan(fieldOfView/2);

A = q / aspectRatio;

B = (near + far) / (near - far);

C = (2.0 * near * far) / (near - far);

The perspective transformation matrix is then:

A 0 0 0

0 q 0 0

0 0 B C

0 0 -1 0

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

31

Lighting

Real world lights have a frequency spectrum

o White light: all (visible) frequencies

o Colored light: restricted frequency distribution

Simplified model:

Light “characteristics”

o Ambient, Diffuse, Specular “reflection characteristics”

o Red, Green, Blue “intensities”

Light “type”

o Positional, Directional, …

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

The “ADS” lighting model

• Ambient reflection simulates a low-level illumination that equally

affects everything in the scene.

• Diffuse reflection brightens objects to various degree depending

on the light’s angle of incidence.

• Specular reflection conveys the shininess of an object by

strategically placing a highlight of appropriate size on the

object’s surface where light is reflected most directly towards

our eyes.

diffuse

specular

highlights

ambient

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

33

Light Types

Point source

o Location, intensity

Directional (“distant”)

o Direction, intensity

Spot

o Location, direction,
intensity, coneAngle,
fallOffRate

θ

Ф

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

TAGE Light classes

TAGE allows an unlimited number of lights.

34

LightManager

+ addLight(Light)

Light

- (static) globalAmbient

- type (positional or spotlight)

- location

- ambient

- diffuse

- specular

- direction

- attenuation factors

- range

- cutoffAngle

- offAxisExponent

*

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

Materials

Models the reflectance characteristics of surfaces.

Usually modeled in ADS with four components:

• Ambient, Diffuse, and Specular

• Shininess (to determine size of specular

highlights)

In TAGE, a GameObject stores its material

characteristics in its ObjShape.

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

some common materials

Barradeu, N., http://www.barradeau.com/nicoptere/dump/materials.html

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

ADS lighting computations

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

θ

light

source

pixel

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

Specular computation depends on the angle of

reflection of the light on the surface, and the viewing

angle of the eye.

θ

light

source

pixel

θ
ϕ

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

“Shininess” modeled with a falloff function.

Expresses how quickly the specular contribution reduces to

zero as the angle ϕ grows.

cos(ϕ)

cos2(ϕ)

cos3(ϕ)

cos50(ϕ)

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

41

ObjShape

-vertices : float[]

-texcoords : float[]

etc...

Sphere ImportedModel SkyBox

GameObject stores matrix transforms

ObjShape stores the vertex locations, ADS material

characteristics, shininess, texture coordinates, normal

vectors, and skeleton information (if applicable).

TextureImage RenderStates

etc…..

GameObject

-localTranslation : Matrix4f

-localRotation : Matrix4f

etc...

