

CSc 165 Lecture Notes 3- Fundamentals of 3 D Systems

Defining Simple 3D Models

A $2 \times 2 \times 2$ "Pyramid" Centered At The Origin

CSc 165 Lecture Notes
amentals of $3 D$ Systems

3D Transformations

Needed for a wide variety of operations:

- Modeling
- Positioning \& orienting objects in the "3D virtual world"
- Camera positioning ("viewing")
- Creating the 2D screen view of the 3D world view ("projection")
- Making objects move, grow, spin, fly, etc.

$$
\left(\begin{array}{c}
\left(x+T_{x}\right) \\
\left(y+T_{y}\right) \\
\left(z+T_{z}\right) \\
1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & T_{x} \\
0 & 1 & 0 & T_{y} \\
0 & 0 & 1 & T_{z} \\
0 & 0 & 0 & 1
\end{array}\right) *\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)
$$

"Any rotation (or sequence of rotations) about a point is equivalent to a single rotation about some axis through that point." [Leonard Euler, 1707-1783]

This is equivalent to saying:
Rotation about an arbitrary line through the origin can be
accomplished by an equivalent set of rotations about the
X, Y, and Z axes.
Thus we can rotate about an arbitrary axis as follows:

1. Translate the axis so it goes through the origin,
2. Rotate by the appropriate "Euler angles" about X, Y, and Z, and
3. "Undo" the translation

3D Rotation Transforms

Rotation about X by $\boldsymbol{\theta}$:

$$
\left(\begin{array}{c}
\mathrm{x}^{\prime} \\
\mathrm{y}^{\prime} \\
\mathrm{z}^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z} \\
1
\end{array}\right)
$$

Rotation about \mathbf{Y} by $\boldsymbol{\theta}$:

$$
\left(\begin{array}{l}
\mathrm{x}^{\prime} \\
\mathrm{Y}^{\prime} \\
\mathrm{Z}^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{Z} \\
1
\end{array}\right)
$$

Rotation about \mathbf{Z} by $\boldsymbol{\theta}$:

$$
\left(\begin{array}{l}
\mathrm{x}^{\prime} \\
\mathrm{r}^{\prime} \\
\mathrm{z}^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z} \\
\mathrm{y}
\end{array}\right)
$$

Rotation in Angle/Axis Form

Game Objects (a.k.a. "scene nodes")

Every object in a scene is an instance of GameObject, which provides translate, rotate, and scale matrices.

GameObjects form a tree called a "scene graph".
This facilitates grouping objects, and building hierarchical objects and systems.

- Fundamentals of 3D System
 Lighting

Real world lights have a frequency spectrum

- White light: all (visible) frequencies
- Colored light: restricted frequency distribution

Simplified model:

Light "characteristics"

- Ambient, Diffuse, Specular "reflection characteristics"
- Red, Green, Blue "intensities"

Light "type"
。 Positional, Directional, ...

Light Types

Point source

- Location, intensity

Directional ("distant")

- Direction, intensity

Spot

- Location, direction,
intensity, coneAngle, fallOffRate

33

The "ADS" lighting model

- Ambient reflection simulates a low-level illumination that equally affects everything in the scene
- Diffuse reflection brightens objects to various degree depending on the light's angle of incidence.
- Specular reflection conveys the shininess of an object by strategically placing a highlight of appropriate size on the object's surface where light is reflected most directly towards our eyes.

■ - $\quad \begin{gathered}\text { CSC } 165 \text { Lecture Notes } \\ \text { 3- Fundamentals of } 3 D \text { Systems }\end{gathered}$
Diffuse computation depends on the angle of incidence between the light and the surface:

$I_{\text {diffuse }}=$ Light $_{\text {diffuse }} *$ Material $_{\text {diffuse }} * \cos (\theta)$
Rightmost term determined simply using dot product: $I_{\text {diffuse }}=$ Light $_{\text {diffuse }} *$ Material $_{\text {diffuse }} *(\hat{N} \bullet \hat{L})$

Only include this term if the surface is exposed to the light: $I_{\text {diff }}{ }^{\text {use }}=$ Light $_{\text {diffuse }} *$ Material $_{\text {diffuse }} * \max ((\hat{N} \bullet \hat{L}), 0)$

"Shininess" modeled with a falloff function.
Expresses how quickly the specular contribution reduces to zero as the angle ϕ grows.

$$
I_{\text {spec }}=\text { Light }_{\text {spec }} * \text { Material }_{\text {spec }} * \max \left(0,(\hat{R} \bullet \hat{V})^{n}\right)
$$

