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3D Coordinate Systems 

Points can be represented in homogeneous form:

P = [x y z 1]

Right-handed Coordinate SystemLeft-handed Coordinate System

X

Y

Z

P (x,y,z)

X

Y

Z

P (x,y,z)
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“Synthetic Camera” Paradigm

Eye (camera)

Y

Z

“View Volume”

“Projection Plane”

X

“Near Clipping Plane”

“Far Clipping Plane”

World Objects
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The “UVN” Camera

Two important camera attributes:

▪ Location

▪ Orientation of  UVN axes

Note the UVN coordinate system is left-handed

U

V

N

+ yaw
(“azimuth”)

+ pitch
(“colatitude” or “elevation”)

+ roll (“up”)
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Generalized Camera Control

Player controls position & orientation
▪ “World” points must be converted to “camera” points

▪ Game engine should handle this (it’s game-independent)

Yw

Zw

Xw

U

V

N
Line of 

sight

World point
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Additional Camera Settings

Znear

U

V

N

Zfar

Field of View (FOV) 

angle in Y

Height

Width

“Aspect Ratio” 
= 

width / height
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FOVY,  Aspect,  Near & Far (Clipping)

▪ Controls “projection” onto 2D plane (& screen)

▪ Again, game engine should handle details
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Default Camera Values

• Loc = [0 0 0],  looking down negative Z

• V = Y,  U = X,  N = -Z

• fovY = 60°,  aspect=1,  near=0.01,  far=1000
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TAGE Camera/Display Class Structure

RenderSystem

GameObject

Viewport

Camera

ObjectShape

Engine

*
*
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TAGE’s Camera class

public class Camera

{

private Vector3f u, v, n, location;

//modify the camera’s location/orientation (note that it is the user’s

//responsibility to insure the camera axes remain mutually perpendicular)

public void setLocation(Vector3f l) {...}

public void setU(Vector3f newU) {...}

public void setV(Vector3f newV) {...}

public void setN(Vector3f newN) {...}

public Vector3f getLocation() {...}

public Vector3f getU() {...}

public Vector3f getV() {...}

public Vector3f getN() {...}

public void lookAt(Vector3f target) {...}

public void lookAt(GameObject go) {...}

public void lookAt(float x, float y, float z) {...}

protected Matrix4f getViewMatrix() {...}

}
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Camera Manipulation

example: “Move Forward” ==

change location along the view direction
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Y

Z

X

CurLoc

NewLoc

ViewDirVector (N)

V

U

CurLoc As 

Vector

NewLoc = CurrentLoc +

(ViewDirVector * moveAmount)
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Camera Manipulation

example: “RotateLeft” ==  (yaw left)

rotate U and N around the V axis
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Y

Z

X

CurLoc

ViewDirVector (N)

VerticalAxis (V)

SideAxis (U)

NewU = Rotate(U,V,amt)

NewN = Rotate(N,V,amt)
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Defining Simple 3D Models

V0 = (0, 1, 0)

Color = red

V3 = (1, -1, -1)

Color = yellow

V2 = (1, -1, 1)

Color = blue

V1 = (-1, -1, 1)

Color = green

X

Y

Z

A 2x2x2 “Pyramid” Centered At The Origin

V4 = (-1, -1, -1)

Color = magenta
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Rasterization

13

“Scan lines”

(pixel raster 

rows)

Output 

Vertex 0
Output 

Vertex 1

Output Vertex 2
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rasterization == interpolation
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Pyramid Data Structure
(non-indexed)

X Y Z

0 0 1 0

1 -1 -1 1

2 1 -1 1

3 0 1 0

4 1 -1 -1

Vertices

0 0 1 2

1 3 4 5

2 6 7 8

3 9 10 11

4 12 13 14

5 15 16 17

Triangles

Geometry

Indexes

one “vertex”
one “vertex index”

etc…
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Pyramid Data Structure
(indexed)

X Y Z

0 0 1 0

1 -1 -1 1

2 1 -1 1

3 1 -1 -1

4 -1 -1 -1

Vertices

0 0 1 2

1 0 2 3

2 0 3 4

3 0 4 1

4 1 4 2

5 4 3 2

Triangles

Geometry

Indexes

one “vertex”
one “vertex index”
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The Graphics “Pipeline”

Vertex 

Processing

(GLSL)

Primitive 

Assembly
Rasterization

Fragment

(“pixel”)

Processing
(GLSL)

Fragment

Testing 

(Blending, HSR, 
etc.)

Frame Buffer

(Memory)

Display

Primitive 

Processing

(Projection, 
Clipping)

Graphics Card

• Implemented by the combination of the graphics driver (software), 

and graphics (hardware) card

• Modern pipelines are “shader-based”, meaning that the rendering 

code resides on the graphics card (for OpenGL, written in GLSL)
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Other Data

“Client Side” “Server Side”
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3D Transformations

Needed for a wide variety of operations:

▪ Modeling

▪ Positioning & orienting objects in the “3D virtual world”

▪ Camera positioning (“viewing”)

▪ Creating the 2D screen view of the 3D world view 

(“projection”)

▪ Making objects move, grow, spin, fly, etc.
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Translation (column-major form):

1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1

*=

(x+Tx)

(y+Ty)

(z+Tz)

1

x

y

z

1
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Scaling (column-major form):

Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1

*=

(x*Sx)

(y*Sy)

(z*Sz)

1

x

y

z

1
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3D Rotation

• Recall 2D rotations can be “about any point”

o For simplicity we define only 2D rotation “about the origin”

o Other rotations require translation to/from the origin

• Similarly, 3D rotations can be “about any line” 
(any “axis of rotation”) :

Y

Z

X

Arbitrary 

Point

“Axis of 

Rotation”
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Euler’s Theorem 

“Any rotation (or sequence of rotations) about a point is   
equivalent to a single rotation about some axis through
that point.” [Leonard Euler, 1707-1783] 

This is equivalent to saying:

Rotation about an arbitrary line through the origin can be 
accomplished by an equivalent set of rotations about the
X, Y, and Z axes.  

Thus we can rotate about an arbitrary axis as follows:

1. Translate the axis so it goes through the origin,

2. Rotate by the appropriate “Euler angles” about X, Y, and Z, and

3. “Undo” the translation

CSc 165 Lecture Notes

3 - Fundamentals of 3D Systems

23

Visualizing Euler’s Theorem

X

Y

Z

Axis of RotationDesired point 

rotation

“Euler angle” rotations to 

accomplish desired rotation
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3D Rotation Transforms 

Rotation about X by θ:

X

Y

Z

1

=

X’

Y’

Z’

1

1          0            0          0   

0       cos θ -sin θ 0   

0       sin θ cos θ 0   

0          0           0           1
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Rotation about Y by θ:

X

Y

Z

1

=

X’

Y’

Z’

1

cos θ 0 sin θ 0   

0 1 0 0

-sin θ 0 cos θ 0   

0 0 0 1
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Rotation about Z by θ:

X

Y

Z

1

=

X’

Y’

Z’

1

cos θ -sin θ 0 0   

sin θ cos θ 0        0   

0 0 1        0   

0            0           0        1
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Rotation in Angle/Axis Form

Rotation Axis =  [ X Y Z ]

Rotation 

Angle *

X
Z

Y

*  Positive rotation = CCW as seen from vector (axis) 

head, looking toward tail at origin (right hand rule)

rotate(60, x, y, z)
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Representing Transforms

JOML (“Java OpenGL Math Library”)

▪ Class  Matrix4f : a 4x4 (“3D”) matrix

Methods for specifying translation, rotation, & scaling, 

obtaining transpose and inverse, etc.

Similar to Java’s AffineTransform (but 3D)

▪ Class  Vector4f : a 4-element (“3D”) vector

Methods for most common vector operations:  add, 

dot- and cross-product, magnitude, normalize…

Useful for representing, for example, a rotation axis
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Game Objects (a.k.a. “scene nodes”)
Every object in a scene is an instance of GameObject, 

which provides translate, rotate, and scale matrices.
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Apply the specified 

transform to the local
matrix

GameObject

-localTranslation : Matrix4f

-localRotation    : Matrix4f

etc...

+ setLocalTranslation(Matrix4f m)

+ setLocalRotation(Matrix4f m)

etc...

ObjShape TextureImage RenderStates

*

(parent)

(children)

GameObjects form a tree called a “scene graph”.

This facilitates grouping objects, and building hierarchical 

objects and systems.
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“Perspective” matrix

q = 1 / tan(fieldOfView/2);

A = q / aspectRatio;

B = (near + far) / (near - far);

C = (2.0 * near * far) / (near - far);

The perspective transformation matrix is then:

A 0 0 0

0 q 0 0

0 0 B C

0 0 -1 0
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Lighting

Real world lights have a frequency spectrum

o White light:  all (visible) frequencies

o Colored light:  restricted frequency distribution

Simplified model: 

Light “characteristics”

o Ambient, Diffuse, Specular “reflection characteristics”

o Red, Green, Blue “intensities”

Light “type”

o Positional, Directional, …
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The “ADS” lighting model

• Ambient reflection simulates a low-level illumination that equally 

affects everything in the scene.

• Diffuse reflection brightens objects to various degree depending 

on the light’s angle of incidence.

• Specular reflection conveys the shininess of an object by 

strategically placing a highlight of appropriate size on the 

object’s surface where light is reflected most directly towards 

our eyes.

diffuse

specular 

highlights

ambient
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Light Types 

Point source

o Location, intensity

Directional (“distant”)

o Direction, intensity

Spot

o Location, direction, 
intensity, coneAngle,
fallOffRate

θ

Ф
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TAGE Light classes

TAGE allows an unlimited number of lights.
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LightManager

+ addLight(Light)

Light

- (static) globalAmbient

- type (positional or spotlight)

- location

- ambient

- diffuse

- specular

- direction

- attenuation factors

- range

- cutoffAngle

- offAxisExponent

*
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Materials

Models the reflectance characteristics of surfaces.

Usually modeled in ADS with four components:

• Ambient, Diffuse, and Specular

• Shininess (to determine size of specular 

highlights)

In TAGE, a GameObject stores its material 

characteristics in its ObjShape.
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some common materials

Barradeu, N., http://www.barradeau.com/nicoptere/dump/materials.html
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ADS lighting computations
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θ

light

source

pixel
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Specular computation depends on the angle of 

reflection of the light on the surface, and the viewing 

angle of the eye.

θ

light

source

pixel

θ
ϕ
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“Shininess” modeled with a falloff function.

Expresses how quickly the specular contribution reduces to 

zero as the angle ϕ grows.

cos(ϕ)

cos2(ϕ)

cos3(ϕ)

cos50(ϕ)
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ObjShape

-vertices   : float[]

-texcoords  : float[]

etc...

Sphere ImportedModel SkyBox

GameObject stores matrix transforms

ObjShape stores the vertex locations, ADS material 

characteristics, shininess, texture coordinates, normal 

vectors, and skeleton information (if applicable).

TextureImage RenderStates

etc…..

GameObject

-localTranslation : Matrix4f

-localRotation    : Matrix4f

etc...


