CSc 165
Computer Game Architecture

02 - Input Handling

" Coiver it anding
2- Player Input Handling

Overview

- Device Types

- Device Abstractions

- Controllers

- Input Handling Packages
- Event Queues

« Input Action Commands
(making the inputs do things)

2 - Player Input Handling
Types of Input Devices

2 - Player Input Handling
Input Handling Goals

Keep games device-independent
o Game shouldn’t contain hard-coded device details
o Game shouldn’t fail when a particular device is absent
(allow substitution)
Keep engine device-independent

o Engine components should not contain hard-coded
device details

... isolate details in an Input Manager

- Keyboard - Steering Wheel
+ Mouse - Dance Pad
- Joystick (“POV”) « Guitar
+ “POV Hat Switch” + WiiMote
+ Gamepad - Kinect
- Paddle - others?
" JEE 2 Player It g

Device Abstractions

Two fundamental device types:

= Button —returns pressed or not pressed
Frequently represented as 1.0 or 0.0

= Axis —returns afloat

Two types of Axis:
Continuous: returns a value in arange
eg. {-1...1} or {0...1}
Discrete: returns avalue from a set
eg. [0,1] or [-1, 0, 1]

Can be absolute or relative

2 - Player Input Handling
“D-pad” (Directional-pad) Axes

Discrete axis devices
o Can have either one or two axes

Single-axis form: one component;

& U
returns one value: L
’ D

25
125 T -375 Dual axis form: two components;
N / each returns a value:
10 €— o —> 5

L N R
1\ X ———
875 625 B 0 +
75
D N u
U U WK R DR D DL L Y:
1 0 +1

T T T T T T —
125 25 375 5 625 .75 875 10

2 - Player Input Handling
Controllers

Most “devices” are really collections :
o Keyboard: collection of (e.g. 127) “buttons”
o Mouse: collection of (typically 1 to 3 or more)
“buttons”, plus two “axes” (‘X’ and ‘Y’)

o Gamepad: collection of buttons and axes
Multiple physical buttons
Joystick: two (continuous) “axes” (per joystick)
D-pad: one or two (discrete) “axes”
“POV hat switch”: one or two (discrete) “axes”

Device collection == “Controller”

" I oot e
2 - Player Input Handling
Controller Example: Dance Pad

YT =)
sl
S
e

1 182 = Vert. Axi
3&4 = Horiz. Axis

e

o0
Currently pressed:
Forward, Right, “O”

o s

12 “devices”: 10 Buttons,

2 discrete axes, each [-1, 0, 1]

[| _ CSc 165 Lecture Notes
2 - Player Input Handling
Controller Example : Steering Wheel

X axis (-1..1)

¥ Steenng Whee! properties C ===
Setngn | Test
Toe e gamncorrobe b covisber et ooty ey
Aam o kit T a1 Goe 76 S g

and pressing gas

Currently turning left >
pedal

(AR A XX KX]
sses

D-pad up-left,

15 “devices”: 12 Buttons (0-11),
returning 0.125

1 discrete axis (D-pad, “pov”) [0, .125, .25,.375,875, 1.0],
2 continuous axes (X & Y) each [-1.1]

" S re s i
2 - Player Input Handling
Controller Example: GamePad

T Arergiow Gamepad for Koo 0 peperses ==

Setrga | e ‘

Test e game cortobr. Fthe corirolle o urcloing pragah Ly

e e cabrmed. To catrae 1 g he Setirge pyg

Ll L&R
. riggers

 etatior

PDP Afterglow P S e |

XBox-360 GamePad) Right

Controller istti;
Py

Batons poctat vt | |

N\

16 “devices”: 10 Buttons,
2 Joysticks (4 continuous axes, each {-1..1}),

2 “Triggers” (combined as a single Axis {-1..1}),
1 D-pad (1 discrete axis:
[0, .125, .25,875,1])

Currently pressed:
A Y, &LB

ControlPanel -> Devices&Printers -> RIGHT-click the controller icon -> Game Controller Settings > Properties
8

" JEE e ot g
2 - Player Input Handling
Controller Example: Guitar

(ST - - uj

[

T ——
|| ront e T clmn e S
pa Wah-wah
L] Zha andle
[[

- ¥ Rotanon,

Gulitar
Nia /Y hots orientation

Buora P of Ve B

Guitar
pick =
75

16 “devices”: 10 Buttons,

5 continuous axes, each {0..1}, buttons

1 discrete axis, [0, .125, .25,.375,... .875,1.0]
(pick Off/Up/Down = [0, .25, .75])

10

1

" e e Nowe
2 - Player Input Handling
Accessing Game Controllers

DirectInput
o Windows-specific (part of Microsoft's DirectX framework)
o (deprecated)

XInput
o Microsoft API for Xbox 360 controllers
o No support for keyboards or mice

OIS (Object-oriented Input System)

o SourceForge (open source) project, mostly C++

JInput
o Part of JGI (Java Gaming Initiative) framework (JOGL, etc.)
o Under negotiation with Jogamp

o Supports Windows, Linux, OS-X, AWT, etc.
12

2 - Player Input Handling
Primary JInput Objects

e ControllerEnvironment

Contains the collection of defined “controllers”
Examples: Keyboard, Mouse, Joystick, GamePad...

+ Controller
Contains a collection of “components” (input generators)
Examples: button, key, slider, dial, controller
Can also contain “rumblers” (output feedback devices)

* Component
An object with a single “range”
Button: on/off
Key: pressed/notPressed
Axis: avalue in some range

13

" S 2B ot i
JInput Organization

<<interface>>
<<interface>> Component
Controller
Controller-
Environment

7 /\

Abstract-
Controller

/\

Windows- |

o] [

Button

Linux-
Controller

Controller

N A < i

0OS-specific keyboard

driver implementations i OS-specific game i loaded by
o controller driver OS-specific game Jinput at
OSspecific mouse npjementations controller driver startup
driver implementations mplementations

14

2 - Player Input Handling
Controller Attributes

« Name (human-readable)
« Type
o Keyboard, Mouse, Fingerstick, GamePad,

HeadTracker, Rudder, Stick, Trackball,
Trackpad, Wheel, Unknown

« Array of (sub)-controllers

- Array of components

- Array of rumblers

- Event Queue

See code example for accessing controller attributes with Jinput

15

2 - Player Input Handling
Component Attributes

+ Name (human-readable)
« “Identifier” (type)

o Axis, Button, or Key
« Return value type

o Relative: value is relative to previous return value

o Absolute: value is independent of previous return value
« Return value range capability

o Analog: allows more than two values

o Digital: only two values allowed (e.g. a button)
» Dead zone value

o Threshold before switching from 0 to non-zero
(useful for joysticks: minor movement ignored)

See code example for accessing component attributes with Jinput
16

= JEE oS e o
2 - Player Input Handling
Component ID

Every component has a type identifier
predefined identifiers in Jinput javadoc for Component.ldentifier.*

=

Identifier

/\ /\

AEIRM

.
17

2 - Player Input Handling
Input Events

Each controller has an event queue

Event

component
value
time

Key
press
or
release

Axis

Button P
Motion in
change

press
or XorY

release

2 - Player Input Handling
Simplifying Input Handling

Game goals:

= For each device component event, invoke some
(game-specified) action associated with that event

= Hide details inside Game Engine

Examples:
= Gamepad Button 2 pressed - Fire Rocket
= Keyboard ‘f' key pressed - Fire Rocket
= Joystick “X” axis moved > Change Camera View
= Guitar “Pick” axis “down” >
button = getCurrentChordButton() ;

if (button == displayedNote) {score++}

19

" 2 Piye ot Hanling
TAGE InputManager*

Implements:

associateAction (controller,
component, Action,..)

o Registers a user-specified action corresponding
to the given controller & component

update (float time)

o Polls the underlying device event queues

o Performs event dispatch (action invocation)

*adapted from SAGE 2

" JEE 2 Pyt o randing
TAGE InputManager (oninue

2 - Player Input Handling
Defining an Action interface

<<interface>>
Action

+ performAction(float time, Event e)

<<abstract>> 4
Abstract- H
InputAction |f-----=—--—-- 3
-~ speed

+ getSpeed ()
+ setSpeed (float)
+ performAction (float,Event)

ZF

MyAction

+ performAction (float,Event)

22

(1) register component-event/action
Application
(game) ——"3
[(2) update() InputManager
(4) invoke actions T (3) getEvents()
JInput
D%%?e/— Jinput Event Queue
1
(LTI LT (LTI
o T 1
e / S
V 21
| | _ CSc 165 Lecture Notes
2- Player Input Handling

Button/Key Action Types

Not all actions should be invoked on every
component state-change

= On Press Only:

Fire_Missile_Action, Reset_Camera Action

= On Press And Release:

Toggle_Running_Action

= Repeatedly while held down:

Move_Forward_Action

23

[| _ CSc 165 Lecture Notes
2 - Player Input Handling
Handling Laptops with
Multiple Keyboards

o Many laptops utilize multiple keyboard controllers to
allow quick plug-and-play of external keyboards.

o This can cause issues identifying the currently active
keyboard to associate with the desired actions.

o A solution is to associate ALL keyboards with a desired
action. TAGE has functions to do this:

associateActionWithAllKeyboards (
component, Action, ActionType)

