
CSc 165

Computer Game Architecture

02 - Input Handling

CSc 165 Lecture Notes

2 - Player Input Handling

2

Overview

• Device Types

• Device Abstractions

• Controllers

• Input Handling Packages

• Event Queues

• Input Action Commands

(making the inputs do things)

CSc 165 Lecture Notes

2 - Player Input Handling

Types of Input Devices

• Keyboard

• Mouse

• Joystick (“POV”)

• “POV Hat Switch”

• Gamepad

• Paddle

3

• Steering Wheel

• Dance Pad

• Guitar

• WiiMote

• Kinect

• others?

CSc 165 Lecture Notes

2 - Player Input Handling

Input Handling Goals

Keep games device-independent

o Game shouldn’t contain hard-coded device details

o Game shouldn’t fail when a particular device is absent

(allow substitution)

Keep engine device-independent

o Engine components should not contain hard-coded

device details

… isolate details in an Input Manager

4

CSc 165 Lecture Notes

2 - Player Input Handling

Device Abstractions

Two fundamental device types:

▪ Button – returns pressed or not pressed

Frequently represented as 1.0 or 0.0

▪ Axis – returns a float

Two types of Axis:

▪ Continuous: returns a value in a range

e.g. { -1 … 1 } or { 0 … 1 }

▪ Discrete: returns a value from a set

e.g. [0, 1] or [-1, 0, 1]

Can be absolute or relative

5

CSc 165 Lecture Notes

2 - Player Input Handling

“D-pad” (Directional-pad) Axes

Discrete axis devices
o Can have either one or two axes

6

D-pad

0

.125

.25

.375

.5

.625

.75

.875

1.0

0 .25.125 .375 .5 .625 .75 .875 1.0

N UL U UR R DR D DL L

U

D

RL

Single-axis form: one component;

returns one value:

Dual axis form: two components;

each returns a value:

X:
0-1 +1

L N R

Y:
0-1 +1

D N U

CSc 165 Lecture Notes

2 - Player Input Handling

Controllers

Most “devices” are really collections :

o Keyboard: collection of (e.g. 127) “buttons”

o Mouse: collection of (typically 1 to 3 or more)

“buttons”, plus two “axes” (‘X’ and ‘Y’)

o Gamepad: collection of buttons and axes

❑ Multiple physical buttons

❑ Joystick: two (continuous) “axes” (per joystick)

❑ D-pad: one or two (discrete) “axes”

❑ “POV hat switch”: one or two (discrete) “axes”

Device collection == “Controller”

7

CSc 165 Lecture Notes

2 - Player Input Handling

Controller Example: GamePad

8

16 “devices”: 10 Buttons,

2 Joysticks (4 continuous axes, each {-1..1}),

2 “Triggers” (combined as a single Axis {-1..1}),

1 D-pad (1 discrete axis:

[0, .125, .25, … .875, 1])

Left

Joystick

Right

Joystick

L & R

Triggers

D-pad

(currently

Left & Up, =

0.125)

Currently pressed:

A, Y, & LB

PDP Afterglow
XBox-360 GamePad

Controller

ControlPanel -> Devices&Printers -> RIGHT-click the controller icon -> Game Controller Settings > Properties

CSc 165 Lecture Notes

2 - Player Input Handling

Controller Example: Dance Pad

9

1

2

3 4

5 6

7 8

9 10

1&2 = Vert. Axis

3&4 = Horiz. Axis

Currently pressed:

Forward, Right, “O”

12 “devices”: 10 Buttons,

2 discrete axes, each [-1, 0, 1]

CSc 165 Lecture Notes

2 - Player Input Handling

Controller Example: Guitar

10

Chord

buttons

Guitar

pick =

.75

Wah-wah

handle

Guitar

orientation

16 “devices”: 10 Buttons,

5 continuous axes, each {0..1},

1 discrete axis, [0, .125, .25, .375, … .875, 1.0]

(pick Off/Up/Down = [0, .25, .75])

CSc 165 Lecture Notes

2 - Player Input Handling

Controller Example : Steering Wheel

11

Y axis

(0..1)

D-

pad

Y axis

(-1..0)

D-pad up-left,

returning 0.125

Currently turning left

and pressing gas

pedal

15 “devices”: 12 Buttons (0-11),

1 discrete axis (D-pad, “pov”) [0, .125, .25, .375, … .875, 1.0],

2 continuous axes (X & Y) each [-1..1]

X axis (-1..1)
Buttons

CSc 165 Lecture Notes

2 - Player Input Handling

12

Accessing Game Controllers

DirectInput

o Windows-specific (part of Microsoft’s DirectX framework)

o (deprecated)

XInput

o Microsoft API for Xbox 360 controllers

o No support for keyboards or mice

OIS (Object-oriented Input System)

o SourceForge (open source) project, mostly C++

JInput

o Part of JGI (Java Gaming Initiative) framework (JOGL, etc.)

o Under negotiation with Jogamp

o Supports Windows, Linux, OS-X, AWT, etc.

CSc 165 Lecture Notes

2 - Player Input Handling

13

Primary JInput Objects

• ControllerEnvironment

Contains the collection of defined “controllers”

▪ Examples: Keyboard, Mouse, Joystick, GamePad…

• Controller

Contains a collection of “components” (input generators)

Examples: button, key, slider, dial, controller

Can also contain “rumblers” (output feedback devices)

• Component

An object with a single “range”

▪ Button: on/off

▪ Key: pressed/notPressed

▪ Axis: a value in some range

CSc 165 Lecture Notes

2 - Player Input Handling

JInput Organization

14

Controller-

Environment

Abstract-

Controller

<<interface>>

Controller

Abstract-

Component

<<abstract>>

Keyboard

<<interface>>

Component

*

*

<<abstract>>

Mouse

OS-specific keyboard

driver implementations

Button

Key

Axis

OS-specific mouse

driver implementations

<<abstract>>

Windows-

Controller

OS-specific game

controller driver

implementations

<<abstract>>

Linux-

Controller

OS-specific game

controller driver

implementations

loaded by

JInput at

startup

…

CSc 165 Lecture Notes

2 - Player Input Handling

15

Controller Attributes

• Name (human-readable)

• Type
o Keyboard, Mouse, Fingerstick, GamePad,

HeadTracker, Rudder, Stick, Trackball,

Trackpad, Wheel, Unknown

• Array of (sub)-controllers

• Array of components

• Array of rumblers

• Event Queue

See code example for accessing controller attributes with JInput

CSc 165 Lecture Notes

2 - Player Input Handling

16

Component Attributes

• Name (human-readable)

• “Identifier” (type)
o Axis, Button, or Key

• Return value type
o Relative: value is relative to previous return value

o Absolute: value is independent of previous return value

• Return value range capability
o Analog: allows more than two values

o Digital: only two values allowed (e.g. a button)

• Dead zone value
o Threshold before switching from 0 to non-zero

(useful for joysticks: minor movement ignored)

See code example for accessing component attributes with JInput

CSc 165 Lecture Notes

2 - Player Input Handling

Component ID

17

Component

Identifier

AxisButtonKey

Every component has a type identifier
predefined identifiers in Jinput javadoc for Component.Identifier.*

A Z CTRL… … _0 …_1 … _31

A B X Y

LEFT_

THUMB

BACK

MODE
X Y Z

RX RY RZ

POV X_ACCELERATION

RX_FORCE

…

…

CSc 165 Lecture Notes

2 - Player Input Handling

Input Events

Each controller has an event queue

18

Button

press

or

release

Motion in

X or Y

Axis

change

Key

press

or

release

Button

press

or

release

Event

component

value

time

CSc 165 Lecture Notes

2 - Player Input Handling

Simplifying Input Handling

Game goals:

▪ For each device component event, invoke some

(game-specified) action associated with that event

▪ Hide details inside Game Engine

Examples:

▪ Gamepad Button 2 pressed → Fire Rocket

▪ Keyboard ‘f’ key pressed → Fire Rocket

▪ Joystick “X” axis moved → Change Camera View

▪ Guitar “Pick” axis “down”→

button = getCurrentChordButton();

if (button == displayedNote) {score++}

19

CSc 165 Lecture Notes

2 - Player Input Handling

TAGE InputManager*

Implements:

associateAction(controller,

component, Action,…)

o Registers a user-specified action corresponding

to the given controller & component

update(float time)

o Polls the underlying device event queues

o Performs event dispatch (action invocation)

20
*adapted from SAGE

CSc 165 Lecture Notes

2 - Player Input Handling

TAGE InputManager (continued)

21

Application

(game)

InputManager

(1) register component-event/action

(2) update()

(3) getEvents()

JInput

JInput Event Queue

(4) invoke actions

CSc 165 Lecture Notes

2 - Player Input Handling

Defining an Action interface

22

<<interface>>

Action

+ performAction(float time, Event e)

<<abstract>>

Abstract-

InputAction

MyAction

+ performAction(float,Event)

- speed

+ getSpeed()

+ setSpeed(float)

+ performAction(float,Event)

CSc 165 Lecture Notes

2 - Player Input Handling

Button/Key Action Types

Not all actions should be invoked on every

component state-change

▪ On Press Only:
Fire_Missile_Action, Reset_Camera_Action

▪ On Press And Release:
Toggle_Running_Action

▪ Repeatedly while held down:
Move_Forward_Action

23

CSc 165 Lecture Notes

2 - Player Input Handling

Handling Laptops with

Multiple Keyboards

o Many laptops utilize multiple keyboard controllers to

allow quick plug-and-play of external keyboards.

o This can cause issues identifying the currently active

keyboard to associate with the desired actions.

o A solution is to associate ALL keyboards with a desired

action. TAGE has functions to do this:

associateActionWithAllKeyboards(

component, Action, ActionType)

24

