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Basic Game Structure
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Basic Game Structure

• The frame rate is how often the screen is re-drawn
o faster frame rate = smoother rendering and play

o faster frame rate requires more processing power

o frame rate can be “fixed” or “variable”

• The game loop manages the real-time game processes
o input – user pressing a key or moving a joystick

o update – game world is updated (objects moved, score updated, etc.)

o render – game world (graphics) is rendered on the screen

o They each have their own timing issues, depending on the game

• A simple type of game loop is called “tightly-coupled”
o input, update, and render are all processed each frame

o every process is “coupled” to the frame rate

o the TAGE game loop is tightly-coupled (mostly)

• There are many other game loop organizations 
o we will learn some others later in the semester
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TAGE Variable Frame Rate

(tightly-coupled) Game Loop
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Application can alternatively use Java’s

KeyListener to process keyboard entries

*

*
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Game ENGINE

A reusable collection of modules

▪ Independent of any particular Game Logic

▪ Encapsulates platform dependencies

▪ Possible because all games have things in common

Game Application Logic

Game Engine

Player
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Typical Game Engine Functions

• Simulation of elapsed time

• Scene Management 
o Objects, geometry details

• Rendering

• Collision Detection/Handling
o Physics simulation

• Lights, Shadows, Textures

• View (camera) control

• Input handling

• Sound generation

• Network communication

• Special effects
o Explosions, fire, …
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o Unity

o Unreal

o Godot

o CryEngine

o Blender

o Panda 3D

o GameMaker

o jMonkey

o OGRE

o Quake

o Lumberyard

(Amazon)

o Torque 3D

o Hero Engine

Some Game Engines

For an expanded list see:

http://en.wikipedia.org/wiki/List_of_game_engines
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or:  “Another Tiny Game Engine”

A collection of Java packages 

8

tage
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Abstracting Game Structure

# protected void initializeSystem();

# abstract void loadShapes();

# public void createViewports();

# abstract void initializeLights();

# abstract void initializeGame();

# public void loadSkyBoxes();

# public void game_loop();

# abstract void update();

# public void shutdown();
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SomeGame

<<abstract>>

tage.VariableFrameRateGame
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# void loadShapes();

# void loadTextures();

# void buildObjects();

# void initializeLights();

# void initializeGame();

# void update();

MyGame

TAGE classes

<<abstract>>

VariableFrameRateGame

Engine

called once

called repeatedly
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Note –

there is another game engine called “TAGE”.

looks like a personal project…

by MagnusRunesson

(he worked on Angry Birds)

“Tiny Arcade Game Engine”

http://en.wikipedia.org/wiki/List_of_game_engines

