
CSc 165

Computer Game Architecture

01 - Game Engines

CSc 165 Lecture Notes

1 - Game Engines

2

Basic Game Structure

One iteration

= 1 Frame

Player Input

Render

Logic Update

“Tightly-coupled” game loop

Start

Initialize

game

Game Main

Loop

Shutdown

Exit

while (!gameOver)

Initialize

system

CSc 165 Lecture Notes

1 - Game Engines

3

Basic Game Structure

• The frame rate is how often the screen is re-drawn
o faster frame rate = smoother rendering and play

o faster frame rate requires more processing power

o frame rate can be “fixed” or “variable”

• The game loop manages the real-time game processes
o input – user pressing a key or moving a joystick

o update – game world is updated (objects moved, score updated, etc.)

o render – game world (graphics) is rendered on the screen

o They each have their own timing issues, depending on the game

• A simple type of game loop is called “tightly-coupled”
o input, update, and render are all processed each frame

o every process is “coupled” to the frame rate

o the TAGE game loop is tightly-coupled (mostly)

• There are many other game loop organizations
o we will learn some others later in the semester

CSc 165 Lecture Notes

1 - Game Engines

4

TAGE Variable Frame Rate

(tightly-coupled) Game Loop

One iteration

= 1 Frame

Input Manager

Update

display()
Logic Updatecalls

Start

Initialize game

(objects, lights)

start

Game Loop

Shutdown

Exit

OpenGL Animator loop

Initialize

system

calls

Application can alternatively use Java’s

KeyListener to process keyboard entries

*

*

CSc 165 Lecture Notes

1 - Game Engines

5

Game ENGINE

A reusable collection of modules

▪ Independent of any particular Game Logic

▪ Encapsulates platform dependencies

▪ Possible because all games have things in common

Game Application Logic

Game Engine

Player

CSc 165 Lecture Notes

1 - Game Engines

6

Typical Game Engine Functions

• Simulation of elapsed time

• Scene Management
o Objects, geometry details

• Rendering

• Collision Detection/Handling
o Physics simulation

• Lights, Shadows, Textures

• View (camera) control

• Input handling

• Sound generation

• Network communication

• Special effects
o Explosions, fire, …

CSc 165 Lecture Notes

1 - Game Engines

7

o Unity

o Unreal

o Godot

o CryEngine

o Blender

o Panda 3D

o GameMaker

o jMonkey

o OGRE

o Quake

o Lumberyard

(Amazon)

o Torque 3D

o Hero Engine

Some Game Engines

For an expanded list see:

http://en.wikipedia.org/wiki/List_of_game_engines

CSc 165 Lecture Notes

1 - Game Engines

TAGE : “Tiny -- Game Engine”

or: “Another Tiny Game Engine”

A collection of Java packages

8

tage

Camera

Light

ObjShape
OpenGL

audio input physics

jbullet

networking

...

AI

GameObject TextureImage

SceneGraph

HUDmanager

Viewport

JOAL JInput

RenderSystem

VFRgame

+

CSc 165 Lecture Notes

1 - Game Engines

Abstracting Game Structure

protected void initializeSystem();

abstract void loadShapes();

public void createViewports();

abstract void initializeLights();

abstract void initializeGame();

public void loadSkyBoxes();

public void game_loop();

abstract void update();

public void shutdown();

9

SomeGame

<<abstract>>

tage.VariableFrameRateGame

CSc 165 Lecture Notes

1 - Game Engines

Creating A Simple Game

10

void loadShapes();

void loadTextures();

void buildObjects();

void initializeLights();

void initializeGame();

void update();

MyGame

TAGE classes

<<abstract>>

VariableFrameRateGame

Engine

called once

called repeatedly

CSc 165 Lecture Notes

1 - Game Engines

11

Note –

there is another game engine called “TAGE”.

looks like a personal project…

by MagnusRunesson

(he worked on Angry Birds)

“Tiny Arcade Game Engine”

http://en.wikipedia.org/wiki/List_of_game_engines

