

Java Swing tips for CSc155
Adding Buttons
You can create buttons and add it to north section of JFrame that has BorderLayout as follows:

import javax.swing.JPanel;
import javax.swing.JButton;
…
JPanel topPanel = new JPanel();
this.add(topPanel,BorderLayout.NORTH);
JButton myButton = new JButton ("Button Label");
topPanel.add(myButton);

In CSc-133 we were using Codename One (CN1) UI framework instead of Swing to build our GUI.
In Swing, JFrame, JPanel, and JButton correspond to Form, Container, and Button in CN1.

Creating Commands and Attaching them to Buttons
You can create a command class (e.g., CustomCommand) by extending from AbstractAction.
AbstractAction corresponds to Command in CN1. However, the code that goes into the
command class is the same in both CN1 and Java.
You can create and attach the command objects as follows:

CustomCommand myCommand = new CustomCommand();
myButton.setAction(myCommand);

setAction() corresponds to setCommand() in CN1.

Handling Mouse Wheel Events
Mouse wheel events are generated when wheel is rotated in a GUI component. We can handle these
events by implementing MouseWheelListener interface:

public interface MouseWheelListener {
 public void mouseWheelMoved (MouseWheelEvent e);
}

You can make your JFrame a “self-listener” by making JFrame implement this interface and add itself
as a listener for mouse wheel events generated on itself as follows:

this.addMouseWheelListener(this);

In mouseWheelMoved() method, you can determine the amount of wheel movement by calling
getWheelRotation() on the MouseWheelEvent object which is passed as a parameter to the
method. An example is shown on the next page.

Capturing Keystrokes
There are two ways of doing this. One is to use Key-Action maps. A simpler way is the following:

• Have your Jframe implement KeyListener
• This requires you to implement code for keyPressed(), keyReleased(), keyClicked(),

and keyTyped(). You really only need keyPressed(), the others can be empty.
• keyPressed() takes a parameter of type KeyEvent. You can use that object to call

getKeyCode() and find out what key was pressed.
• You’ll need to add a couple of imports.

An example is shown on the next page:

import javax.swing.*;
import java.awt.BorderLayout;
import java.awt.event.*;
. . .
public class myGame extends JFrame implements GLEventListener, KeyListener, MouseWheelListener
{ . . .

 @Override
 public void mouseWheelMoved(MouseWheelEvent e) {
 // do something when the mouse wheel is moved.
 // the amount and direction of mouse wheel movement can be retrieved from e.getWheelRotation();
 }

 @Override
 public void keyPressed(KeyEvent e) {
 switch (e.getKeyCode()) {
 case KeyEvent.VK_1:
 // do something when the “1” key is pressed
 break;
 case KeyEvent.VK_2:
 // do something when the “2” key is pressed
 break;
 }
 }

 @Override
 public void keyTyped(KeyEvent e) { } // must be present, but may be empty

 @Override
 public void keyReleased(KeyEvent e) { } // must be present, but may be empty

}

	Adding Buttons

